Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads
The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of t...
Gespeichert in:
Veröffentlicht in: | International journal of non-linear mechanics 2018-05, Vol.101, p.56-67 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | |
container_start_page | 56 |
container_title | International journal of non-linear mechanics |
container_volume | 101 |
creator | Li, Y.H. Wang, L. Yang, E.C. |
description | The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique.
•The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed. |
doi_str_mv | 10.1016/j.ijnonlinmec.2018.02.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073516190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746217304833</els_id><sourcerecordid>2073516190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</originalsourceid><addsrcrecordid>eNqNkE1v2zAMhoWhA5a2-w8aerZH2fLXsQi6tUCwXdazQEn0KsOWUskJmn8_pdlhx50IEu9Dgg9jXwSUAkT7dSrd5IOfnV_IlBWIvoSqBOg-sI3ou75o2rq_YhuACopOttUndp3SBJmV0G2Y-_EOE0ZuTx4XZ3iktA8-UeJh5Og5vjmc5xNfwtH533zOIY8rWa4JF54OeiJzbtfAdVhfuJ4xrRnMkxeKC858DmjTLfs44pzo8996w56_PfzaPha7n9-ftve7wtRyWAvdW9GMLWqQ9SDJ1mC0qRu0TYujGPvOUGX7fhDdKA2RkVbrAUQjhZEoWqxv2N1l7z6G1wOlVU3hEH0-qSro6ka0YoCcGi4pE0NKkUa1j27BeFIC1NmsmtQ_ZtXZrIJKZbOZ3V5Yym8cHUWVjCNvyLqYVSgb3H9s-QNl3opF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073516190</pqid></control><display><type>article</type><title>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Y.H. ; Wang, L. ; Yang, E.C.</creator><creatorcontrib>Li, Y.H. ; Wang, L. ; Yang, E.C.</creatorcontrib><description>The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique.
•The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2018.02.007</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Axially moving ; Blast load ; Blast loads ; Constitutive relationships ; Differential equations ; Equilibrium equations ; Free vibration ; Frequencies ; Frequency stability ; Galerkin method ; Laminated beam ; Mathematical analysis ; Ordinary differential equations ; Resonant frequencies ; Runge-Kutta method ; Temperature ; Thermal analysis ; Thermal environment ; Velocity ; Vibration</subject><ispartof>International journal of non-linear mechanics, 2018-05, Vol.101, p.56-67</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</citedby><cites>FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746217304833$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Li, Y.H.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yang, E.C.</creatorcontrib><title>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</title><title>International journal of non-linear mechanics</title><description>The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique.
•The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed.</description><subject>Axially moving</subject><subject>Blast load</subject><subject>Blast loads</subject><subject>Constitutive relationships</subject><subject>Differential equations</subject><subject>Equilibrium equations</subject><subject>Free vibration</subject><subject>Frequencies</subject><subject>Frequency stability</subject><subject>Galerkin method</subject><subject>Laminated beam</subject><subject>Mathematical analysis</subject><subject>Ordinary differential equations</subject><subject>Resonant frequencies</subject><subject>Runge-Kutta method</subject><subject>Temperature</subject><subject>Thermal analysis</subject><subject>Thermal environment</subject><subject>Velocity</subject><subject>Vibration</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v2zAMhoWhA5a2-w8aerZH2fLXsQi6tUCwXdazQEn0KsOWUskJmn8_pdlhx50IEu9Dgg9jXwSUAkT7dSrd5IOfnV_IlBWIvoSqBOg-sI3ou75o2rq_YhuACopOttUndp3SBJmV0G2Y-_EOE0ZuTx4XZ3iktA8-UeJh5Og5vjmc5xNfwtH533zOIY8rWa4JF54OeiJzbtfAdVhfuJ4xrRnMkxeKC858DmjTLfs44pzo8996w56_PfzaPha7n9-ftve7wtRyWAvdW9GMLWqQ9SDJ1mC0qRu0TYujGPvOUGX7fhDdKA2RkVbrAUQjhZEoWqxv2N1l7z6G1wOlVU3hEH0-qSro6ka0YoCcGi4pE0NKkUa1j27BeFIC1NmsmtQ_ZtXZrIJKZbOZ3V5Yym8cHUWVjCNvyLqYVSgb3H9s-QNl3opF</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Li, Y.H.</creator><creator>Wang, L.</creator><creator>Yang, E.C.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</title><author>Li, Y.H. ; Wang, L. ; Yang, E.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axially moving</topic><topic>Blast load</topic><topic>Blast loads</topic><topic>Constitutive relationships</topic><topic>Differential equations</topic><topic>Equilibrium equations</topic><topic>Free vibration</topic><topic>Frequencies</topic><topic>Frequency stability</topic><topic>Galerkin method</topic><topic>Laminated beam</topic><topic>Mathematical analysis</topic><topic>Ordinary differential equations</topic><topic>Resonant frequencies</topic><topic>Runge-Kutta method</topic><topic>Temperature</topic><topic>Thermal analysis</topic><topic>Thermal environment</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.H.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yang, E.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y.H.</au><au>Wang, L.</au><au>Yang, E.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>101</volume><spage>56</spage><epage>67</epage><pages>56-67</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique.
•The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2018.02.007</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2018-05, Vol.101, p.56-67 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_journals_2073516190 |
source | Elsevier ScienceDirect Journals |
subjects | Axially moving Blast load Blast loads Constitutive relationships Differential equations Equilibrium equations Free vibration Frequencies Frequency stability Galerkin method Laminated beam Mathematical analysis Ordinary differential equations Resonant frequencies Runge-Kutta method Temperature Thermal analysis Thermal environment Velocity Vibration |
title | Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20responses%20of%20an%20axially%20moving%20laminated%20beam%20subjected%20to%20both%20blast%20and%20thermal%20loads&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Li,%20Y.H.&rft.date=2018-05&rft.volume=101&rft.spage=56&rft.epage=67&rft.pages=56-67&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2018.02.007&rft_dat=%3Cproquest_cross%3E2073516190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073516190&rft_id=info:pmid/&rft_els_id=S0020746217304833&rfr_iscdi=true |