Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads

The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2018-05, Vol.101, p.56-67
Hauptverfasser: Li, Y.H., Wang, L., Yang, E.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 56
container_title International journal of non-linear mechanics
container_volume 101
creator Li, Y.H.
Wang, L.
Yang, E.C.
description The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique. •The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed.
doi_str_mv 10.1016/j.ijnonlinmec.2018.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073516190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746217304833</els_id><sourcerecordid>2073516190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</originalsourceid><addsrcrecordid>eNqNkE1v2zAMhoWhA5a2-w8aerZH2fLXsQi6tUCwXdazQEn0KsOWUskJmn8_pdlhx50IEu9Dgg9jXwSUAkT7dSrd5IOfnV_IlBWIvoSqBOg-sI3ou75o2rq_YhuACopOttUndp3SBJmV0G2Y-_EOE0ZuTx4XZ3iktA8-UeJh5Og5vjmc5xNfwtH533zOIY8rWa4JF54OeiJzbtfAdVhfuJ4xrRnMkxeKC858DmjTLfs44pzo8996w56_PfzaPha7n9-ftve7wtRyWAvdW9GMLWqQ9SDJ1mC0qRu0TYujGPvOUGX7fhDdKA2RkVbrAUQjhZEoWqxv2N1l7z6G1wOlVU3hEH0-qSro6ka0YoCcGi4pE0NKkUa1j27BeFIC1NmsmtQ_ZtXZrIJKZbOZ3V5Yym8cHUWVjCNvyLqYVSgb3H9s-QNl3opF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073516190</pqid></control><display><type>article</type><title>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Y.H. ; Wang, L. ; Yang, E.C.</creator><creatorcontrib>Li, Y.H. ; Wang, L. ; Yang, E.C.</creatorcontrib><description>The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique. •The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2018.02.007</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Axially moving ; Blast load ; Blast loads ; Constitutive relationships ; Differential equations ; Equilibrium equations ; Free vibration ; Frequencies ; Frequency stability ; Galerkin method ; Laminated beam ; Mathematical analysis ; Ordinary differential equations ; Resonant frequencies ; Runge-Kutta method ; Temperature ; Thermal analysis ; Thermal environment ; Velocity ; Vibration</subject><ispartof>International journal of non-linear mechanics, 2018-05, Vol.101, p.56-67</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</citedby><cites>FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746217304833$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Li, Y.H.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yang, E.C.</creatorcontrib><title>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</title><title>International journal of non-linear mechanics</title><description>The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique. •The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed.</description><subject>Axially moving</subject><subject>Blast load</subject><subject>Blast loads</subject><subject>Constitutive relationships</subject><subject>Differential equations</subject><subject>Equilibrium equations</subject><subject>Free vibration</subject><subject>Frequencies</subject><subject>Frequency stability</subject><subject>Galerkin method</subject><subject>Laminated beam</subject><subject>Mathematical analysis</subject><subject>Ordinary differential equations</subject><subject>Resonant frequencies</subject><subject>Runge-Kutta method</subject><subject>Temperature</subject><subject>Thermal analysis</subject><subject>Thermal environment</subject><subject>Velocity</subject><subject>Vibration</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v2zAMhoWhA5a2-w8aerZH2fLXsQi6tUCwXdazQEn0KsOWUskJmn8_pdlhx50IEu9Dgg9jXwSUAkT7dSrd5IOfnV_IlBWIvoSqBOg-sI3ou75o2rq_YhuACopOttUndp3SBJmV0G2Y-_EOE0ZuTx4XZ3iktA8-UeJh5Og5vjmc5xNfwtH533zOIY8rWa4JF54OeiJzbtfAdVhfuJ4xrRnMkxeKC858DmjTLfs44pzo8996w56_PfzaPha7n9-ftve7wtRyWAvdW9GMLWqQ9SDJ1mC0qRu0TYujGPvOUGX7fhDdKA2RkVbrAUQjhZEoWqxv2N1l7z6G1wOlVU3hEH0-qSro6ka0YoCcGi4pE0NKkUa1j27BeFIC1NmsmtQ_ZtXZrIJKZbOZ3V5Yym8cHUWVjCNvyLqYVSgb3H9s-QNl3opF</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Li, Y.H.</creator><creator>Wang, L.</creator><creator>Yang, E.C.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201805</creationdate><title>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</title><author>Li, Y.H. ; Wang, L. ; Yang, E.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b8d15f6ab04394ed30cbc35ad56af1f87ce2d88917f4ceec4dbb901541c4a16a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axially moving</topic><topic>Blast load</topic><topic>Blast loads</topic><topic>Constitutive relationships</topic><topic>Differential equations</topic><topic>Equilibrium equations</topic><topic>Free vibration</topic><topic>Frequencies</topic><topic>Frequency stability</topic><topic>Galerkin method</topic><topic>Laminated beam</topic><topic>Mathematical analysis</topic><topic>Ordinary differential equations</topic><topic>Resonant frequencies</topic><topic>Runge-Kutta method</topic><topic>Temperature</topic><topic>Thermal analysis</topic><topic>Thermal environment</topic><topic>Velocity</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.H.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yang, E.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y.H.</au><au>Wang, L.</au><au>Yang, E.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>101</volume><spage>56</spage><epage>67</epage><pages>56-67</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>The nonlinear dynamic responses of an axially moving laminated beam subjected to a blast load in thermal environment is studied considering large-displacement. Firstly, the nonlinear dynamic equilibrium equation is established based on the large-displacement theory and the constitutive relation of the single layer material in thermal environment. Based on the Galerkin method, a set of ordinary differential equations is obtained. Secondly, the multiple scales method is adopted to get the nonlinear free vibration frequency. Then, the stability region of the axial velocity and temperature is derived and the truncation order is approximated by the convergence calculation of the natural frequencies. Finally, numerical calculations are performed to discuss the effects of different kinds of blast loads, axial velocity and temperature on the nonlinear dynamic responses adopting the Runge–Kutta technique. •The geometrical nonlinearity of the structure is considered.•The axial velocity, temperature and blast load are considered at the same time.•Effects of axial velocity and temperature on the nonlinear response are discussed.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2018.02.007</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2018-05, Vol.101, p.56-67
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_journals_2073516190
source Elsevier ScienceDirect Journals
subjects Axially moving
Blast load
Blast loads
Constitutive relationships
Differential equations
Equilibrium equations
Free vibration
Frequencies
Frequency stability
Galerkin method
Laminated beam
Mathematical analysis
Ordinary differential equations
Resonant frequencies
Runge-Kutta method
Temperature
Thermal analysis
Thermal environment
Velocity
Vibration
title Nonlinear dynamic responses of an axially moving laminated beam subjected to both blast and thermal loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20responses%20of%20an%20axially%20moving%20laminated%20beam%20subjected%20to%20both%20blast%20and%20thermal%20loads&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Li,%20Y.H.&rft.date=2018-05&rft.volume=101&rft.spage=56&rft.epage=67&rft.pages=56-67&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2018.02.007&rft_dat=%3Cproquest_cross%3E2073516190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073516190&rft_id=info:pmid/&rft_els_id=S0020746217304833&rfr_iscdi=true