The axisymmetric shrink fit problem subjected to axial force

A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is ever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, A, Solids A, Solids, 2018-07, Vol.70, p.172-180
Hauptverfasser: Lopes, J.P., Hills, D.A., Paynter, R.J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue
container_start_page 172
container_title European journal of mechanics, A, Solids
container_volume 70
creator Lopes, J.P.
Hills, D.A.
Paynter, R.J.H.
description A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft. •A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft.
doi_str_mv 10.1016/j.euromechsol.2018.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073515660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753817309282</els_id><sourcerecordid>2073515660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EEqXwDkHMCcdOfInEgipuUiWWMluOfaI6JHWxEwRvT6oyMDKd5b-c_yPkmkJBgYrbrsAphgHtNoW-YEBVAawAkCdkQZUsc8kUPyULqGuZS16qc3KRUgcADBhdkLvNFjPz5dP3MOAYvc3SNvrde9b6MdvH0PQ4ZGlqOrQjumwMB7HpszZEi5fkrDV9wqvfuyRvjw-b1XO-fn16Wd2vc1sBjLkVjStLg8I1WIpGUlPVNQMjKwXGgeBOCN60SjUouGK1kAIrKsEJWXOGdbkkN8fc-aGPCdOouzDF3VypGciSUy4EzKr6qLIxpBSx1fvoBxO_NQV9gKU7_QeWPsDSwPQMa_aujl6cZ3x6jDpZjzuLzsd5uXbB_yPlB28SeGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073515660</pqid></control><display><type>article</type><title>The axisymmetric shrink fit problem subjected to axial force</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lopes, J.P. ; Hills, D.A. ; Paynter, R.J.H.</creator><creatorcontrib>Lopes, J.P. ; Hills, D.A. ; Paynter, R.J.H.</creatorcontrib><description>A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft. •A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2018.02.007</identifier><language>eng</language><publisher>Berlin: Elsevier Masson SAS</publisher><subject>Assembly ; Axial forces ; Axial stress ; Axisymmetric ; Coefficient of friction ; Contact ; Contact pressure ; Contact stresses ; Dislocations ; Geometry ; Half spaces ; Integral equations ; Mechanical engineering ; Mechanics ; Ring dislocations ; Shrink fit ; Slip ; Strain nuclei</subject><ispartof>European journal of mechanics, A, Solids, 2018-07, Vol.70, p.172-180</ispartof><rights>2018 Elsevier Masson SAS</rights><rights>Copyright Elsevier BV Jul/Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</citedby><cites>FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechsol.2018.02.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lopes, J.P.</creatorcontrib><creatorcontrib>Hills, D.A.</creatorcontrib><creatorcontrib>Paynter, R.J.H.</creatorcontrib><title>The axisymmetric shrink fit problem subjected to axial force</title><title>European journal of mechanics, A, Solids</title><description>A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft. •A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft.</description><subject>Assembly</subject><subject>Axial forces</subject><subject>Axial stress</subject><subject>Axisymmetric</subject><subject>Coefficient of friction</subject><subject>Contact</subject><subject>Contact pressure</subject><subject>Contact stresses</subject><subject>Dislocations</subject><subject>Geometry</subject><subject>Half spaces</subject><subject>Integral equations</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Ring dislocations</subject><subject>Shrink fit</subject><subject>Slip</subject><subject>Strain nuclei</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EEqXwDkHMCcdOfInEgipuUiWWMluOfaI6JHWxEwRvT6oyMDKd5b-c_yPkmkJBgYrbrsAphgHtNoW-YEBVAawAkCdkQZUsc8kUPyULqGuZS16qc3KRUgcADBhdkLvNFjPz5dP3MOAYvc3SNvrde9b6MdvH0PQ4ZGlqOrQjumwMB7HpszZEi5fkrDV9wqvfuyRvjw-b1XO-fn16Wd2vc1sBjLkVjStLg8I1WIpGUlPVNQMjKwXGgeBOCN60SjUouGK1kAIrKsEJWXOGdbkkN8fc-aGPCdOouzDF3VypGciSUy4EzKr6qLIxpBSx1fvoBxO_NQV9gKU7_QeWPsDSwPQMa_aujl6cZ3x6jDpZjzuLzsd5uXbB_yPlB28SeGA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Lopes, J.P.</creator><creator>Hills, D.A.</creator><creator>Paynter, R.J.H.</creator><general>Elsevier Masson SAS</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201807</creationdate><title>The axisymmetric shrink fit problem subjected to axial force</title><author>Lopes, J.P. ; Hills, D.A. ; Paynter, R.J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assembly</topic><topic>Axial forces</topic><topic>Axial stress</topic><topic>Axisymmetric</topic><topic>Coefficient of friction</topic><topic>Contact</topic><topic>Contact pressure</topic><topic>Contact stresses</topic><topic>Dislocations</topic><topic>Geometry</topic><topic>Half spaces</topic><topic>Integral equations</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Ring dislocations</topic><topic>Shrink fit</topic><topic>Slip</topic><topic>Strain nuclei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, J.P.</creatorcontrib><creatorcontrib>Hills, D.A.</creatorcontrib><creatorcontrib>Paynter, R.J.H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, J.P.</au><au>Hills, D.A.</au><au>Paynter, R.J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The axisymmetric shrink fit problem subjected to axial force</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2018-07</date><risdate>2018</risdate><volume>70</volume><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft. •A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft.</abstract><cop>Berlin</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2018.02.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0997-7538
ispartof European journal of mechanics, A, Solids, 2018-07, Vol.70, p.172-180
issn 0997-7538
1873-7285
language eng
recordid cdi_proquest_journals_2073515660
source Access via ScienceDirect (Elsevier)
subjects Assembly
Axial forces
Axial stress
Axisymmetric
Coefficient of friction
Contact
Contact pressure
Contact stresses
Dislocations
Geometry
Half spaces
Integral equations
Mechanical engineering
Mechanics
Ring dislocations
Shrink fit
Slip
Strain nuclei
title The axisymmetric shrink fit problem subjected to axial force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20axisymmetric%20shrink%20fit%20problem%20subjected%20to%20axial%20force&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Lopes,%20J.P.&rft.date=2018-07&rft.volume=70&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2018.02.007&rft_dat=%3Cproquest_cross%3E2073515660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073515660&rft_id=info:pmid/&rft_els_id=S0997753817309282&rfr_iscdi=true