The axisymmetric shrink fit problem subjected to axial force
A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is ever...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2018-07, Vol.70, p.172-180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | |
container_start_page | 172 |
container_title | European journal of mechanics, A, Solids |
container_volume | 70 |
creator | Lopes, J.P. Hills, D.A. Paynter, R.J.H. |
description | A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft.
•A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft. |
doi_str_mv | 10.1016/j.euromechsol.2018.02.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073515660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753817309282</els_id><sourcerecordid>2073515660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</originalsourceid><addsrcrecordid>eNqNkLtOwzAUhi0EEqXwDkHMCcdOfInEgipuUiWWMluOfaI6JHWxEwRvT6oyMDKd5b-c_yPkmkJBgYrbrsAphgHtNoW-YEBVAawAkCdkQZUsc8kUPyULqGuZS16qc3KRUgcADBhdkLvNFjPz5dP3MOAYvc3SNvrde9b6MdvH0PQ4ZGlqOrQjumwMB7HpszZEi5fkrDV9wqvfuyRvjw-b1XO-fn16Wd2vc1sBjLkVjStLg8I1WIpGUlPVNQMjKwXGgeBOCN60SjUouGK1kAIrKsEJWXOGdbkkN8fc-aGPCdOouzDF3VypGciSUy4EzKr6qLIxpBSx1fvoBxO_NQV9gKU7_QeWPsDSwPQMa_aujl6cZ3x6jDpZjzuLzsd5uXbB_yPlB28SeGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073515660</pqid></control><display><type>article</type><title>The axisymmetric shrink fit problem subjected to axial force</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lopes, J.P. ; Hills, D.A. ; Paynter, R.J.H.</creator><creatorcontrib>Lopes, J.P. ; Hills, D.A. ; Paynter, R.J.H.</creatorcontrib><description>A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft.
•A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2018.02.007</identifier><language>eng</language><publisher>Berlin: Elsevier Masson SAS</publisher><subject>Assembly ; Axial forces ; Axial stress ; Axisymmetric ; Coefficient of friction ; Contact ; Contact pressure ; Contact stresses ; Dislocations ; Geometry ; Half spaces ; Integral equations ; Mechanical engineering ; Mechanics ; Ring dislocations ; Shrink fit ; Slip ; Strain nuclei</subject><ispartof>European journal of mechanics, A, Solids, 2018-07, Vol.70, p.172-180</ispartof><rights>2018 Elsevier Masson SAS</rights><rights>Copyright Elsevier BV Jul/Aug 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</citedby><cites>FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechsol.2018.02.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lopes, J.P.</creatorcontrib><creatorcontrib>Hills, D.A.</creatorcontrib><creatorcontrib>Paynter, R.J.H.</creatorcontrib><title>The axisymmetric shrink fit problem subjected to axial force</title><title>European journal of mechanics, A, Solids</title><description>A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft.
•A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft.</description><subject>Assembly</subject><subject>Axial forces</subject><subject>Axial stress</subject><subject>Axisymmetric</subject><subject>Coefficient of friction</subject><subject>Contact</subject><subject>Contact pressure</subject><subject>Contact stresses</subject><subject>Dislocations</subject><subject>Geometry</subject><subject>Half spaces</subject><subject>Integral equations</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Ring dislocations</subject><subject>Shrink fit</subject><subject>Slip</subject><subject>Strain nuclei</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkLtOwzAUhi0EEqXwDkHMCcdOfInEgipuUiWWMluOfaI6JHWxEwRvT6oyMDKd5b-c_yPkmkJBgYrbrsAphgHtNoW-YEBVAawAkCdkQZUsc8kUPyULqGuZS16qc3KRUgcADBhdkLvNFjPz5dP3MOAYvc3SNvrde9b6MdvH0PQ4ZGlqOrQjumwMB7HpszZEi5fkrDV9wqvfuyRvjw-b1XO-fn16Wd2vc1sBjLkVjStLg8I1WIpGUlPVNQMjKwXGgeBOCN60SjUouGK1kAIrKsEJWXOGdbkkN8fc-aGPCdOouzDF3VypGciSUy4EzKr6qLIxpBSx1fvoBxO_NQV9gKU7_QeWPsDSwPQMa_aujl6cZ3x6jDpZjzuLzsd5uXbB_yPlB28SeGA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Lopes, J.P.</creator><creator>Hills, D.A.</creator><creator>Paynter, R.J.H.</creator><general>Elsevier Masson SAS</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201807</creationdate><title>The axisymmetric shrink fit problem subjected to axial force</title><author>Lopes, J.P. ; Hills, D.A. ; Paynter, R.J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c6bd33ae6dbe36b71a49920a7480ad065d665bf88be65829676e4170d67952e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assembly</topic><topic>Axial forces</topic><topic>Axial stress</topic><topic>Axisymmetric</topic><topic>Coefficient of friction</topic><topic>Contact</topic><topic>Contact pressure</topic><topic>Contact stresses</topic><topic>Dislocations</topic><topic>Geometry</topic><topic>Half spaces</topic><topic>Integral equations</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Ring dislocations</topic><topic>Shrink fit</topic><topic>Slip</topic><topic>Strain nuclei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopes, J.P.</creatorcontrib><creatorcontrib>Hills, D.A.</creatorcontrib><creatorcontrib>Paynter, R.J.H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopes, J.P.</au><au>Hills, D.A.</au><au>Paynter, R.J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The axisymmetric shrink fit problem subjected to axial force</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2018-07</date><risdate>2018</risdate><volume>70</volume><spage>172</spage><epage>180</epage><pages>172-180</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>A solution for the stress fields in a shaft-hub shrink-fit assembly subjected to an axial force is presented. The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space. The stress field for a bilateral solution is obtained, considering that the contact interface is everywhere subjected to pressure and that the coefficient of friction is sufficient to prevent slip everywhere. This solution is then corrected to satisfy the slip condition using an array of strain nuclei in the form of glide ring dislocations. The contact pressure, shear traction and their ratio is presented as a function of the coefficient of friction and the ratio of shrink-fit to axial force stresses. Finally, the solution is extended to a finite shaft.
•A shaft-hub system is assembled under shrink-fit.•The assembly is modelled as a semi-infinite shaft embedded within an elastic half-space.•A bilateral solution is obtained under the assumption of no-slip.•The stress fields are corrected using glide ring dislocations.•The corrected solution is extended to a finite shaft.</abstract><cop>Berlin</cop><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2018.02.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7538 |
ispartof | European journal of mechanics, A, Solids, 2018-07, Vol.70, p.172-180 |
issn | 0997-7538 1873-7285 |
language | eng |
recordid | cdi_proquest_journals_2073515660 |
source | Access via ScienceDirect (Elsevier) |
subjects | Assembly Axial forces Axial stress Axisymmetric Coefficient of friction Contact Contact pressure Contact stresses Dislocations Geometry Half spaces Integral equations Mechanical engineering Mechanics Ring dislocations Shrink fit Slip Strain nuclei |
title | The axisymmetric shrink fit problem subjected to axial force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20axisymmetric%20shrink%20fit%20problem%20subjected%20to%20axial%20force&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Lopes,%20J.P.&rft.date=2018-07&rft.volume=70&rft.spage=172&rft.epage=180&rft.pages=172-180&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2018.02.007&rft_dat=%3Cproquest_cross%3E2073515660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073515660&rft_id=info:pmid/&rft_els_id=S0997753817309282&rfr_iscdi=true |