Lipophilicity of acetylcholine and related ions examined by ion transfer voltammetry at a polarized room-temperature ionic liquid membrane

Ion transfer voltammetry at a polarized room-temperature ionic liquid (IL) membrane was used to evaluate the standard Gibbs energy of ion transfer from water to IL. This quantity was considered to be a measure of the ion lipophilicity, which is one of the factors playing a role in the extraction and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electroanalytical chemistry (Lausanne, Switzerland) Switzerland), 2018-04, Vol.815, p.183-188
Hauptverfasser: Langmaier, Jan, Záliš, Stanislav, Samec, Zdeněk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ion transfer voltammetry at a polarized room-temperature ionic liquid (IL) membrane was used to evaluate the standard Gibbs energy of ion transfer from water to IL. This quantity was considered to be a measure of the ion lipophilicity, which is one of the factors playing a role in the extraction and transport processes in the two-phase liquid and liquid membrane systems. On this basis, the lipophilicity of several biologically active ions was compared, namely of neurotransmitter acetylcholine (ACH+) and several related ions including choline (CH+, precursor for ACH+), muscarine (MUS+, agonist of the muscarinic ACH+ receptors), protonated atropine (ATH+, antagonist of the muscarinic ACH+ receptors), protonated scopolamine (SAH+, antagonist of the muscarinic ACH+), and the tetramethylammonium ion (TMA+) representing their charged moiety. Cyclic voltammetric measurements were carried out using a 4-electrode cell with the IL membrane composed of highly hydrophobic tridodecylmethylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate. Analysis of the voltammetric data provided the values of the standard Gibbs energy of ion transfer (in kJ mol−1 in parentheses), which follow the order of ions TMA+ (14.6) 
ISSN:1572-6657
1873-2569
DOI:10.1016/j.jelechem.2018.03.019