On null hypotheses in survival analysis

The conventional nonparametric tests in survival analysis, such as the log-rank test, assess the null hypothesis that the hazards are equal at all times. However, hazards are hard to interpret causally, and other null hypotheses are more relevant in many scenarios with survival outcomes. To allow fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: Mats Julius Stensrud, Røysland, Kjetil, Pål Christie Ryalen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mats Julius Stensrud
Røysland, Kjetil
Pål Christie Ryalen
description The conventional nonparametric tests in survival analysis, such as the log-rank test, assess the null hypothesis that the hazards are equal at all times. However, hazards are hard to interpret causally, and other null hypotheses are more relevant in many scenarios with survival outcomes. To allow for a wider range of null hypotheses, we present a generic approach to define test statistics. This approach utilizes the fact that a wide range of common parameters in survival analysis can be expressed as solutions of differential equations. Thereby we can test hypotheses based on survival parameters that solve differential equations driven by cumulative hazards, and it is easy to implement the tests on a computer. We present simulations, suggesting that our tests perform well for several hypotheses in a range of scenarios. Finally, we use our tests to evaluate the effect of adjuvant chemotherapies in patients with colon cancer, using data from a randomised controlled trial.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073469954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073469954</sourcerecordid><originalsourceid>FETCH-proquest_journals_20734699543</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ989TyCvNyVHIqCzIL8lILU4tVsjMUyguLSrLLEvMUUjMS8ypLM4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMXF8UYG5sYmZpaWpibGxKkCAJOlMCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073469954</pqid></control><display><type>article</type><title>On null hypotheses in survival analysis</title><source>Free E- Journals</source><creator>Mats Julius Stensrud ; Røysland, Kjetil ; Pål Christie Ryalen</creator><creatorcontrib>Mats Julius Stensrud ; Røysland, Kjetil ; Pål Christie Ryalen</creatorcontrib><description>The conventional nonparametric tests in survival analysis, such as the log-rank test, assess the null hypothesis that the hazards are equal at all times. However, hazards are hard to interpret causally, and other null hypotheses are more relevant in many scenarios with survival outcomes. To allow for a wider range of null hypotheses, we present a generic approach to define test statistics. This approach utilizes the fact that a wide range of common parameters in survival analysis can be expressed as solutions of differential equations. Thereby we can test hypotheses based on survival parameters that solve differential equations driven by cumulative hazards, and it is easy to implement the tests on a computer. We present simulations, suggesting that our tests perform well for several hypotheses in a range of scenarios. Finally, we use our tests to evaluate the effect of adjuvant chemotherapies in patients with colon cancer, using data from a randomised controlled trial.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Colon ; Computer simulation ; Differential equations ; Economic models ; Hazard assessment ; Hypotheses ; Null hypothesis ; Parameters ; Rank tests ; Statistical tests ; Survival ; Survival analysis</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Mats Julius Stensrud</creatorcontrib><creatorcontrib>Røysland, Kjetil</creatorcontrib><creatorcontrib>Pål Christie Ryalen</creatorcontrib><title>On null hypotheses in survival analysis</title><title>arXiv.org</title><description>The conventional nonparametric tests in survival analysis, such as the log-rank test, assess the null hypothesis that the hazards are equal at all times. However, hazards are hard to interpret causally, and other null hypotheses are more relevant in many scenarios with survival outcomes. To allow for a wider range of null hypotheses, we present a generic approach to define test statistics. This approach utilizes the fact that a wide range of common parameters in survival analysis can be expressed as solutions of differential equations. Thereby we can test hypotheses based on survival parameters that solve differential equations driven by cumulative hazards, and it is easy to implement the tests on a computer. We present simulations, suggesting that our tests perform well for several hypotheses in a range of scenarios. Finally, we use our tests to evaluate the effect of adjuvant chemotherapies in patients with colon cancer, using data from a randomised controlled trial.</description><subject>Colon</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Economic models</subject><subject>Hazard assessment</subject><subject>Hypotheses</subject><subject>Null hypothesis</subject><subject>Parameters</subject><subject>Rank tests</subject><subject>Statistical tests</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ989TyCvNyVHIqCzIL8lILU4tVsjMUyguLSrLLEvMUUjMS8ypLM4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMXF8UYG5sYmZpaWpibGxKkCAJOlMCk</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Mats Julius Stensrud</creator><creator>Røysland, Kjetil</creator><creator>Pål Christie Ryalen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190128</creationdate><title>On null hypotheses in survival analysis</title><author>Mats Julius Stensrud ; Røysland, Kjetil ; Pål Christie Ryalen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20734699543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Colon</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Economic models</topic><topic>Hazard assessment</topic><topic>Hypotheses</topic><topic>Null hypothesis</topic><topic>Parameters</topic><topic>Rank tests</topic><topic>Statistical tests</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Mats Julius Stensrud</creatorcontrib><creatorcontrib>Røysland, Kjetil</creatorcontrib><creatorcontrib>Pål Christie Ryalen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mats Julius Stensrud</au><au>Røysland, Kjetil</au><au>Pål Christie Ryalen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On null hypotheses in survival analysis</atitle><jtitle>arXiv.org</jtitle><date>2019-01-28</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The conventional nonparametric tests in survival analysis, such as the log-rank test, assess the null hypothesis that the hazards are equal at all times. However, hazards are hard to interpret causally, and other null hypotheses are more relevant in many scenarios with survival outcomes. To allow for a wider range of null hypotheses, we present a generic approach to define test statistics. This approach utilizes the fact that a wide range of common parameters in survival analysis can be expressed as solutions of differential equations. Thereby we can test hypotheses based on survival parameters that solve differential equations driven by cumulative hazards, and it is easy to implement the tests on a computer. We present simulations, suggesting that our tests perform well for several hypotheses in a range of scenarios. Finally, we use our tests to evaluate the effect of adjuvant chemotherapies in patients with colon cancer, using data from a randomised controlled trial.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073469954
source Free E- Journals
subjects Colon
Computer simulation
Differential equations
Economic models
Hazard assessment
Hypotheses
Null hypothesis
Parameters
Rank tests
Statistical tests
Survival
Survival analysis
title On null hypotheses in survival analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20null%20hypotheses%20in%20survival%20analysis&rft.jtitle=arXiv.org&rft.au=Mats%20Julius%20Stensrud&rft.date=2019-01-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073469954%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073469954&rft_id=info:pmid/&rfr_iscdi=true