Analytic continuation of the kite family
We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-07 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bogner, Christian Schweitzer, Armin Weinzierl, Stefan |
description | We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073418908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073418908</sourcerecordid><originalsourceid>FETCH-proquest_journals_20734189083</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMxLzKksyUxWSM7PK8nMK00syczPU8hPUyjJSFXIzixJVUhLzM3MqeRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUDDiuONDMyNTQwtLA0sjIlTBQC0KDA2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073418908</pqid></control><display><type>article</type><title>Analytic continuation of the kite family</title><source>Freely Accessible Journals</source><creator>Bogner, Christian ; Schweitzer, Armin ; Weinzierl, Stefan</creator><creatorcontrib>Bogner, Christian ; Schweitzer, Armin ; Weinzierl, Stefan</creatorcontrib><description>We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curves ; Integrals ; Mathematical analysis ; Power series</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bogner, Christian</creatorcontrib><creatorcontrib>Schweitzer, Armin</creatorcontrib><creatorcontrib>Weinzierl, Stefan</creatorcontrib><title>Analytic continuation of the kite family</title><title>arXiv.org</title><description>We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula.</description><subject>Curves</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Power series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMxLzKksyUxWSM7PK8nMK00syczPU8hPUyjJSFXIzixJVUhLzM3MqeRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUDDiuONDMyNTQwtLA0sjIlTBQC0KDA2</recordid><startdate>20180706</startdate><enddate>20180706</enddate><creator>Bogner, Christian</creator><creator>Schweitzer, Armin</creator><creator>Weinzierl, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180706</creationdate><title>Analytic continuation of the kite family</title><author>Bogner, Christian ; Schweitzer, Armin ; Weinzierl, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20734189083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Curves</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Power series</topic><toplevel>online_resources</toplevel><creatorcontrib>Bogner, Christian</creatorcontrib><creatorcontrib>Schweitzer, Armin</creatorcontrib><creatorcontrib>Weinzierl, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogner, Christian</au><au>Schweitzer, Armin</au><au>Weinzierl, Stefan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analytic continuation of the kite family</atitle><jtitle>arXiv.org</jtitle><date>2018-07-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073418908 |
source | Freely Accessible Journals |
subjects | Curves Integrals Mathematical analysis Power series |
title | Analytic continuation of the kite family |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analytic%20continuation%20of%20the%20kite%20family&rft.jtitle=arXiv.org&rft.au=Bogner,%20Christian&rft.date=2018-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073418908%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073418908&rft_id=info:pmid/&rfr_iscdi=true |