Analytic continuation of the kite family

We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-07
Hauptverfasser: Bogner, Christian, Schweitzer, Armin, Weinzierl, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bogner, Christian
Schweitzer, Armin
Weinzierl, Stefan
description We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073418908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073418908</sourcerecordid><originalsourceid>FETCH-proquest_journals_20734189083</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMxLzKksyUxWSM7PK8nMK00syczPU8hPUyjJSFXIzixJVUhLzM3MqeRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUDDiuONDMyNTQwtLA0sjIlTBQC0KDA2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073418908</pqid></control><display><type>article</type><title>Analytic continuation of the kite family</title><source>Freely Accessible Journals</source><creator>Bogner, Christian ; Schweitzer, Armin ; Weinzierl, Stefan</creator><creatorcontrib>Bogner, Christian ; Schweitzer, Armin ; Weinzierl, Stefan</creatorcontrib><description>We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curves ; Integrals ; Mathematical analysis ; Power series</subject><ispartof>arXiv.org, 2018-07</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bogner, Christian</creatorcontrib><creatorcontrib>Schweitzer, Armin</creatorcontrib><creatorcontrib>Weinzierl, Stefan</creatorcontrib><title>Analytic continuation of the kite family</title><title>arXiv.org</title><description>We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula.</description><subject>Curves</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Power series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcMxLzKksyUxWSM7PK8nMK00syczPU8hPUyjJSFXIzixJVUhLzM3MqeRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUDDiuONDMyNTQwtLA0sjIlTBQC0KDA2</recordid><startdate>20180706</startdate><enddate>20180706</enddate><creator>Bogner, Christian</creator><creator>Schweitzer, Armin</creator><creator>Weinzierl, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180706</creationdate><title>Analytic continuation of the kite family</title><author>Bogner, Christian ; Schweitzer, Armin ; Weinzierl, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20734189083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Curves</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Power series</topic><toplevel>online_resources</toplevel><creatorcontrib>Bogner, Christian</creatorcontrib><creatorcontrib>Schweitzer, Armin</creatorcontrib><creatorcontrib>Weinzierl, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogner, Christian</au><au>Schweitzer, Armin</au><au>Weinzierl, Stefan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analytic continuation of the kite family</atitle><jtitle>arXiv.org</jtitle><date>2018-07-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We consider results for the master integrals of the kite family, given in terms of ELi-functions which are power series in the nome \(q\) of an elliptic curve. The analytic continuation of these results beyond the Euclidean region is reduced to the analytic continuation of the two period integrals which define \(q.\) We discuss the solution to the latter problem from the perspective of the Picard-Lefschetz formula.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073418908
source Freely Accessible Journals
subjects Curves
Integrals
Mathematical analysis
Power series
title Analytic continuation of the kite family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analytic%20continuation%20of%20the%20kite%20family&rft.jtitle=arXiv.org&rft.au=Bogner,%20Christian&rft.date=2018-07-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073418908%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073418908&rft_id=info:pmid/&rfr_iscdi=true