Invariant Subspaces of Positive Quasinilpotent Operators on Ordered Banach Spaces
In this paper we find invariant subspaces of certain positive quasinilpotent operators on Krein spaces and, more generally, on ordered Banach spaces with closed generating cones. In the later case, we use the method of minimal vectors. We present applications to Sobolev spaces, spaces of differentia...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2008-05, Vol.12 (2), p.193-208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 12 |
creator | Gessesse, Hailegebriel E. Troitsky, Vladimir G. |
description | In this paper we find invariant subspaces of certain positive quasinilpotent operators on Krein spaces and, more generally, on ordered Banach spaces with closed generating cones. In the later case, we use the method of minimal vectors. We present applications to Sobolev spaces, spaces of differentiable functions, and C*-algebras. |
doi_str_mv | 10.1007/s11117-007-2124-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207341791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1473308871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-acc137480b0c659d9d595b5930e93f181504ccc682691eca1935336c218a50d63</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLsiuIzm5tEmSx18DAyMw-g6ZNJUO4xpTdoB_72pHXTl3dwD-c654SB0AeQaCCluIqQpcJKYAuWYH6AJiIJiRSUcJs2kwEAVPUYnMW4ISS5OJmg58zsTauO7bNWvY2usi1lTZc9NrLt657Jlb2Lt623bdC5Bi9YF0zUhQT5bhNIFV2Z3xhv7nq1-3GfoqDLb6M73-xS9Pty_TJ_wfPE4m97OsWVcdNhYC6zgkqyJzYUqVSmUWAvFiFOsAgmCcGttLmmuwFkDignGcktBGkHKnJ2iyzG3Dc1n72KnN00ffDqpKSkYh0JBgmCEbGhiDK7Sbag_TPjSQPRQnB6L04McitM8ea72wSZas62C8baOv0ZKmIRcDtl05GJ68m8u_H3g__BvEcJ8LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207341791</pqid></control><display><type>article</type><title>Invariant Subspaces of Positive Quasinilpotent Operators on Ordered Banach Spaces</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Gessesse, Hailegebriel E. ; Troitsky, Vladimir G.</creator><creatorcontrib>Gessesse, Hailegebriel E. ; Troitsky, Vladimir G.</creatorcontrib><description>In this paper we find invariant subspaces of certain positive quasinilpotent operators on Krein spaces and, more generally, on ordered Banach spaces with closed generating cones. In the later case, we use the method of minimal vectors. We present applications to Sobolev spaces, spaces of differentiable functions, and C*-algebras.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-007-2124-4</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Banach spaces ; Calculus of Variations and Optimal Control; Optimization ; Commuting ; Econometrics ; Exact sciences and technology ; Fourier Analysis ; Functional analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory ; Sciences and techniques of general use ; Studies ; Vector space</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2008-05, Vol.12 (2), p.193-208</ispartof><rights>Springer Science + Business Media B.V. 2008</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-acc137480b0c659d9d595b5930e93f181504ccc682691eca1935336c218a50d63</citedby><cites>FETCH-LOGICAL-c345t-acc137480b0c659d9d595b5930e93f181504ccc682691eca1935336c218a50d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-007-2124-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-007-2124-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20381681$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gessesse, Hailegebriel E.</creatorcontrib><creatorcontrib>Troitsky, Vladimir G.</creatorcontrib><title>Invariant Subspaces of Positive Quasinilpotent Operators on Ordered Banach Spaces</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper we find invariant subspaces of certain positive quasinilpotent operators on Krein spaces and, more generally, on ordered Banach spaces with closed generating cones. In the later case, we use the method of minimal vectors. We present applications to Sobolev spaces, spaces of differentiable functions, and C*-algebras.</description><subject>Banach spaces</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Commuting</subject><subject>Econometrics</subject><subject>Exact sciences and technology</subject><subject>Fourier Analysis</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Vector space</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLsiuIzm5tEmSx18DAyMw-g6ZNJUO4xpTdoB_72pHXTl3dwD-c654SB0AeQaCCluIqQpcJKYAuWYH6AJiIJiRSUcJs2kwEAVPUYnMW4ISS5OJmg58zsTauO7bNWvY2usi1lTZc9NrLt657Jlb2Lt623bdC5Bi9YF0zUhQT5bhNIFV2Z3xhv7nq1-3GfoqDLb6M73-xS9Pty_TJ_wfPE4m97OsWVcdNhYC6zgkqyJzYUqVSmUWAvFiFOsAgmCcGttLmmuwFkDignGcktBGkHKnJ2iyzG3Dc1n72KnN00ffDqpKSkYh0JBgmCEbGhiDK7Sbag_TPjSQPRQnB6L04McitM8ea72wSZas62C8baOv0ZKmIRcDtl05GJ68m8u_H3g__BvEcJ8LA</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Gessesse, Hailegebriel E.</creator><creator>Troitsky, Vladimir G.</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200805</creationdate><title>Invariant Subspaces of Positive Quasinilpotent Operators on Ordered Banach Spaces</title><author>Gessesse, Hailegebriel E. ; Troitsky, Vladimir G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-acc137480b0c659d9d595b5930e93f181504ccc682691eca1935336c218a50d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Banach spaces</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Commuting</topic><topic>Econometrics</topic><topic>Exact sciences and technology</topic><topic>Fourier Analysis</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Vector space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gessesse, Hailegebriel E.</creatorcontrib><creatorcontrib>Troitsky, Vladimir G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gessesse, Hailegebriel E.</au><au>Troitsky, Vladimir G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant Subspaces of Positive Quasinilpotent Operators on Ordered Banach Spaces</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2008-05</date><risdate>2008</risdate><volume>12</volume><issue>2</issue><spage>193</spage><epage>208</epage><pages>193-208</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper we find invariant subspaces of certain positive quasinilpotent operators on Krein spaces and, more generally, on ordered Banach spaces with closed generating cones. In the later case, we use the method of minimal vectors. We present applications to Sobolev spaces, spaces of differentiable functions, and C*-algebras.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><doi>10.1007/s11117-007-2124-4</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2008-05, Vol.12 (2), p.193-208 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_207341791 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Banach spaces Calculus of Variations and Optimal Control Optimization Commuting Econometrics Exact sciences and technology Fourier Analysis Functional analysis Mathematical analysis Mathematics Mathematics and Statistics Operator Theory Potential Theory Sciences and techniques of general use Studies Vector space |
title | Invariant Subspaces of Positive Quasinilpotent Operators on Ordered Banach Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20Subspaces%20of%20Positive%20Quasinilpotent%20Operators%20on%20Ordered%20Banach%20Spaces&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Gessesse,%20Hailegebriel%20E.&rft.date=2008-05&rft.volume=12&rft.issue=2&rft.spage=193&rft.epage=208&rft.pages=193-208&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-007-2124-4&rft_dat=%3Cproquest_cross%3E1473308871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207341791&rft_id=info:pmid/&rfr_iscdi=true |