The Laplace transform Induced by the Deformed Exponential Function of Two Variables
Based on the easy computation of the direct transform and its inversion, the Laplace transform was used as an effective method for solving differential and integral equations. Its various generalizations appeared in order to be used for treating some new problems. They were based on the generalizati...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2018-06, Vol.21 (3), p.775-785 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 785 |
---|---|
container_issue | 3 |
container_start_page | 775 |
container_title | Fractional calculus & applied analysis |
container_volume | 21 |
creator | Rajković, Predrag M. Stanković, Miomir S. Marinković, Sladjana D. |
description | Based on the easy computation of the direct transform and its inversion, the Laplace transform was used as an effective method for solving differential and integral equations. Its various generalizations appeared in order to be used for treating some new problems. They were based on the generalizations and deformations of the kernel function and of the notion of integral. Here, we expose our generalization of the Laplace transform based on the so-called deformed exponential function of two variables. We point out on some of its properties which hold on in the same or similar manner as in the case of the classical Laplace transform. Relations to a generalized Mittag-Leffler function and to a kind of fractional Riemann-Liouville type integral and derivative are exhibited. |
doi_str_mv | 10.1515/fca-2018-0040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073388728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073388728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-cec1dacd9f09f54572e40560f3c16287e05e4cdf6b9fbf0f75d1e10ad7528bac3</originalsourceid><addsrcrecordid>eNqFkM1LwzAYxoMoOOaO3gOeM_PRtCmeZG46GHhweg1pmsyOrqlJy9x_b2oFL4Lv5f3g9zwvPABcEzwnnPBbqxWimAiEcYLPwIQwkiBKaXL-PROEE55cglkIexxL0BTnYgJetu8GblRbK21g51UTrPMHuG7KXpsSFifYReDBDNe4Lz9b15imq1QNV32ju8o10Fm4PTr4pnylitqEK3BhVR3M7KdPwetquV08oc3z43pxv0GaEdohbTQplS5zi3PLE55Rk2CeYss0SanIDOYm0aVNi9wWFtuMl8QQrMqMU1EozabgZvRtvfvoTejk3vW-iS8lxRljQmRURAqNlPYuBG-sbH11UP4kCZZDdDJGJ4fo5BBd5O9G_qjqzvjS7Hx_isOv-Z86SliW8aiej-oQvzS7f2XsC9SHg6Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073388728</pqid></control><display><type>article</type><title>The Laplace transform Induced by the Deformed Exponential Function of Two Variables</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Rajković, Predrag M. ; Stanković, Miomir S. ; Marinković, Sladjana D.</creator><creatorcontrib>Rajković, Predrag M. ; Stanković, Miomir S. ; Marinković, Sladjana D.</creatorcontrib><description>Based on the easy computation of the direct transform and its inversion, the Laplace transform was used as an effective method for solving differential and integral equations. Its various generalizations appeared in order to be used for treating some new problems. They were based on the generalizations and deformations of the kernel function and of the notion of integral. Here, we expose our generalization of the Laplace transform based on the so-called deformed exponential function of two variables. We point out on some of its properties which hold on in the same or similar manner as in the case of the classical Laplace transform. Relations to a generalized Mittag-Leffler function and to a kind of fractional Riemann-Liouville type integral and derivative are exhibited.</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2018-0040</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>Abstract Harmonic Analysis ; Analysis ; convolution ; Deformation ; Derivatives ; Differential equations ; differential operator ; exponential function ; Exponential functions ; fractional calculus ; Functional Analysis ; Integral equations ; integral transform ; Integral Transforms ; Integrals ; Kernel functions ; Laplace transforms ; Mathematics ; Operational Calculus ; Primary 44A10 ; Research Paper ; Secondary 33B10, 26A33</subject><ispartof>Fractional calculus & applied analysis, 2018-06, Vol.21 (3), p.775-785</ispartof><rights>Diogenes Co., Sofia 2018</rights><rights>Copyright Walter de Gruyter GmbH 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-cec1dacd9f09f54572e40560f3c16287e05e4cdf6b9fbf0f75d1e10ad7528bac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2018-0040$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2018-0040$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Rajković, Predrag M.</creatorcontrib><creatorcontrib>Stanković, Miomir S.</creatorcontrib><creatorcontrib>Marinković, Sladjana D.</creatorcontrib><title>The Laplace transform Induced by the Deformed Exponential Function of Two Variables</title><title>Fractional calculus & applied analysis</title><addtitle>FCAA</addtitle><description>Based on the easy computation of the direct transform and its inversion, the Laplace transform was used as an effective method for solving differential and integral equations. Its various generalizations appeared in order to be used for treating some new problems. They were based on the generalizations and deformations of the kernel function and of the notion of integral. Here, we expose our generalization of the Laplace transform based on the so-called deformed exponential function of two variables. We point out on some of its properties which hold on in the same or similar manner as in the case of the classical Laplace transform. Relations to a generalized Mittag-Leffler function and to a kind of fractional Riemann-Liouville type integral and derivative are exhibited.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>convolution</subject><subject>Deformation</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>differential operator</subject><subject>exponential function</subject><subject>Exponential functions</subject><subject>fractional calculus</subject><subject>Functional Analysis</subject><subject>Integral equations</subject><subject>integral transform</subject><subject>Integral Transforms</subject><subject>Integrals</subject><subject>Kernel functions</subject><subject>Laplace transforms</subject><subject>Mathematics</subject><subject>Operational Calculus</subject><subject>Primary 44A10</subject><subject>Research Paper</subject><subject>Secondary 33B10, 26A33</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkM1LwzAYxoMoOOaO3gOeM_PRtCmeZG46GHhweg1pmsyOrqlJy9x_b2oFL4Lv5f3g9zwvPABcEzwnnPBbqxWimAiEcYLPwIQwkiBKaXL-PROEE55cglkIexxL0BTnYgJetu8GblRbK21g51UTrPMHuG7KXpsSFifYReDBDNe4Lz9b15imq1QNV32ju8o10Fm4PTr4pnylitqEK3BhVR3M7KdPwetquV08oc3z43pxv0GaEdohbTQplS5zi3PLE55Rk2CeYss0SanIDOYm0aVNi9wWFtuMl8QQrMqMU1EozabgZvRtvfvoTejk3vW-iS8lxRljQmRURAqNlPYuBG-sbH11UP4kCZZDdDJGJ4fo5BBd5O9G_qjqzvjS7Hx_isOv-Z86SliW8aiej-oQvzS7f2XsC9SHg6Y</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Rajković, Predrag M.</creator><creator>Stanković, Miomir S.</creator><creator>Marinković, Sladjana D.</creator><general>Versita</general><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180626</creationdate><title>The Laplace transform Induced by the Deformed Exponential Function of Two Variables</title><author>Rajković, Predrag M. ; Stanković, Miomir S. ; Marinković, Sladjana D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-cec1dacd9f09f54572e40560f3c16287e05e4cdf6b9fbf0f75d1e10ad7528bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>convolution</topic><topic>Deformation</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>differential operator</topic><topic>exponential function</topic><topic>Exponential functions</topic><topic>fractional calculus</topic><topic>Functional Analysis</topic><topic>Integral equations</topic><topic>integral transform</topic><topic>Integral Transforms</topic><topic>Integrals</topic><topic>Kernel functions</topic><topic>Laplace transforms</topic><topic>Mathematics</topic><topic>Operational Calculus</topic><topic>Primary 44A10</topic><topic>Research Paper</topic><topic>Secondary 33B10, 26A33</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajković, Predrag M.</creatorcontrib><creatorcontrib>Stanković, Miomir S.</creatorcontrib><creatorcontrib>Marinković, Sladjana D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fractional calculus & applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajković, Predrag M.</au><au>Stanković, Miomir S.</au><au>Marinković, Sladjana D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Laplace transform Induced by the Deformed Exponential Function of Two Variables</atitle><jtitle>Fractional calculus & applied analysis</jtitle><stitle>FCAA</stitle><date>2018-06-26</date><risdate>2018</risdate><volume>21</volume><issue>3</issue><spage>775</spage><epage>785</epage><pages>775-785</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>Based on the easy computation of the direct transform and its inversion, the Laplace transform was used as an effective method for solving differential and integral equations. Its various generalizations appeared in order to be used for treating some new problems. They were based on the generalizations and deformations of the kernel function and of the notion of integral. Here, we expose our generalization of the Laplace transform based on the so-called deformed exponential function of two variables. We point out on some of its properties which hold on in the same or similar manner as in the case of the classical Laplace transform. Relations to a generalized Mittag-Leffler function and to a kind of fractional Riemann-Liouville type integral and derivative are exhibited.</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2018-0040</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1311-0454 |
ispartof | Fractional calculus & applied analysis, 2018-06, Vol.21 (3), p.775-785 |
issn | 1311-0454 1314-2224 |
language | eng |
recordid | cdi_proquest_journals_2073388728 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Abstract Harmonic Analysis Analysis convolution Deformation Derivatives Differential equations differential operator exponential function Exponential functions fractional calculus Functional Analysis Integral equations integral transform Integral Transforms Integrals Kernel functions Laplace transforms Mathematics Operational Calculus Primary 44A10 Research Paper Secondary 33B10, 26A33 |
title | The Laplace transform Induced by the Deformed Exponential Function of Two Variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T17%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Laplace%20transform%20Induced%20by%20the%20Deformed%20Exponential%20Function%20of%20Two%20Variables&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Rajkovi%C4%87,%20Predrag%20M.&rft.date=2018-06-26&rft.volume=21&rft.issue=3&rft.spage=775&rft.epage=785&rft.pages=775-785&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2018-0040&rft_dat=%3Cproquest_cross%3E2073388728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073388728&rft_id=info:pmid/&rfr_iscdi=true |