Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty

We provide simple schemes to build Bayesian Neural Networks (BNNs), block by block, inspired by a recent idea of computation skeletons. We show how by adjusting the types of blocks that are used within the computation skeleton, we can identify interesting relationships with Deep Gaussian Processes (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-06
Hauptverfasser: Zhou, Hao Henry, Xiong, Yunyang, Singh, Vikas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide simple schemes to build Bayesian Neural Networks (BNNs), block by block, inspired by a recent idea of computation skeletons. We show how by adjusting the types of blocks that are used within the computation skeleton, we can identify interesting relationships with Deep Gaussian Processes (DGPs), deep kernel learning (DKL), random features type approximation and other topics. We give strategies to approximate the posterior via doubly stochastic variational inference for such models which yield uncertainty estimates. We give a detailed theoretical analysis and point out extensions that may be of independent interest. As a special case, we instantiate our procedure to define a Bayesian {\em additive} Neural network -- a promising strategy to identify statistical interactions and has direct benefits for obtaining interpretable models.
ISSN:2331-8422