Performance Estimation of Differential Evolution, Particle Swarm Optimization and Cuckoo Search Algorithms
Most design optimization problems in engineering are in general extremely nonlinear and deal with various design variables under complex restrictions. Traditional mathematical optimization procedure may fail to find the optimum solution to real-world problems. Evolutionary Algorithms (EAs) can serve...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems and applications 2018-06, Vol.10 (6), p.59-67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 6 |
container_start_page | 59 |
container_title | International journal of intelligent systems and applications |
container_volume | 10 |
creator | Prajapati, Pankaj P. Shah, Mihir V. |
description | Most design optimization problems in engineering are in general extremely nonlinear and deal with various design variables under complex restrictions. Traditional mathematical optimization procedure may fail to find the optimum solution to real-world problems. Evolutionary Algorithms (EAs) can serve as an efficient approach for these types of optimization problems. In this paper, Particle Swarm Optimization (PSO), Differential Evolution (DE) and Cuckoo Search (CS) algorithms are used to find the optimal solution for some typical unimodal and multimodal benchmark functions. The source codes of all these algorithms are developed using C language and tested on a core i5, 2.4 GHz processor with 8 GB internal RAM. PSO algorithm has a simplicity of implementation and good convergence speed. In contrast, CS algorithm has good ability to find a global optimum solution. To use the advantages of CS and PSO algorithms, a hybrid algorithm of CS and PSO (CSPSO) is implemented and tested with the same benchmark functions. The experimental simulation results obtained by all these algorithms show that hybrid CSPSO outperforms with PSO, DE and CS algorithms. |
doi_str_mv | 10.5815/ijisa.2018.06.07 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073360268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073360268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2287-db8de367fb273223d6f6262cff58f8c6323935f32aea9c0a991eedc8dcff7933</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4MoOObuHgNebU2TNk2OY84fMNhgO3gLWZq41LaZSavoX29mxXd5D973-768DwDXGUoLlhV3trZBphhlLEU0ReUZmGBU5glHBTv_n_OXSzALoUaxKMtZxieg3mhvnG9lpzRcht62sreug87Ae2uM9rrrrWzg8sM1w2lzCzfS91Y1Gm4_pW_h-hhN9nu0ya6Ci0G9OQe3Wnp1gPPm1XnbH9pwBS6MbIKe_fUp2D0sd4unZLV-fF7MV4nCmJVJtWeVJrQ0e1wSjElFDcUUK2MKZpiiBBNOCkOw1JIrJDnPtK4Uq6Ki5IRMwc149ujd-6BDL2o3-C4misiBEIowZVGFRpXyLgSvjTj6-Lv_EhkSJ6bil6k4MRWIiuj8AeaqbNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073360268</pqid></control><display><type>article</type><title>Performance Estimation of Differential Evolution, Particle Swarm Optimization and Cuckoo Search Algorithms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Prajapati, Pankaj P. ; Shah, Mihir V.</creator><creatorcontrib>Prajapati, Pankaj P. ; Shah, Mihir V. ; EC Department, L. D. College of Engineering, Ahmedabad, 380001, India</creatorcontrib><description>Most design optimization problems in engineering are in general extremely nonlinear and deal with various design variables under complex restrictions. Traditional mathematical optimization procedure may fail to find the optimum solution to real-world problems. Evolutionary Algorithms (EAs) can serve as an efficient approach for these types of optimization problems. In this paper, Particle Swarm Optimization (PSO), Differential Evolution (DE) and Cuckoo Search (CS) algorithms are used to find the optimal solution for some typical unimodal and multimodal benchmark functions. The source codes of all these algorithms are developed using C language and tested on a core i5, 2.4 GHz processor with 8 GB internal RAM. PSO algorithm has a simplicity of implementation and good convergence speed. In contrast, CS algorithm has good ability to find a global optimum solution. To use the advantages of CS and PSO algorithms, a hybrid algorithm of CS and PSO (CSPSO) is implemented and tested with the same benchmark functions. The experimental simulation results obtained by all these algorithms show that hybrid CSPSO outperforms with PSO, DE and CS algorithms.</description><identifier>ISSN: 2074-904X</identifier><identifier>EISSN: 2074-9058</identifier><identifier>DOI: 10.5815/ijisa.2018.06.07</identifier><language>eng</language><publisher>Hong Kong: Modern Education and Computer Science Press</publisher><subject>Algorithms ; Benchmarks ; Complex variables ; Computer simulation ; Design engineering ; Design optimization ; Evolutionary algorithms ; Microprocessors ; Particle swarm optimization ; Search algorithms</subject><ispartof>International journal of intelligent systems and applications, 2018-06, Vol.10 (6), p.59-67</ispartof><rights>2018. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2287-db8de367fb273223d6f6262cff58f8c6323935f32aea9c0a991eedc8dcff7933</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Prajapati, Pankaj P.</creatorcontrib><creatorcontrib>Shah, Mihir V.</creatorcontrib><creatorcontrib>EC Department, L. D. College of Engineering, Ahmedabad, 380001, India</creatorcontrib><title>Performance Estimation of Differential Evolution, Particle Swarm Optimization and Cuckoo Search Algorithms</title><title>International journal of intelligent systems and applications</title><description>Most design optimization problems in engineering are in general extremely nonlinear and deal with various design variables under complex restrictions. Traditional mathematical optimization procedure may fail to find the optimum solution to real-world problems. Evolutionary Algorithms (EAs) can serve as an efficient approach for these types of optimization problems. In this paper, Particle Swarm Optimization (PSO), Differential Evolution (DE) and Cuckoo Search (CS) algorithms are used to find the optimal solution for some typical unimodal and multimodal benchmark functions. The source codes of all these algorithms are developed using C language and tested on a core i5, 2.4 GHz processor with 8 GB internal RAM. PSO algorithm has a simplicity of implementation and good convergence speed. In contrast, CS algorithm has good ability to find a global optimum solution. To use the advantages of CS and PSO algorithms, a hybrid algorithm of CS and PSO (CSPSO) is implemented and tested with the same benchmark functions. The experimental simulation results obtained by all these algorithms show that hybrid CSPSO outperforms with PSO, DE and CS algorithms.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Complex variables</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Evolutionary algorithms</subject><subject>Microprocessors</subject><subject>Particle swarm optimization</subject><subject>Search algorithms</subject><issn>2074-904X</issn><issn>2074-9058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kM9LwzAUx4MoOObuHgNebU2TNk2OY84fMNhgO3gLWZq41LaZSavoX29mxXd5D973-768DwDXGUoLlhV3trZBphhlLEU0ReUZmGBU5glHBTv_n_OXSzALoUaxKMtZxieg3mhvnG9lpzRcht62sreug87Ae2uM9rrrrWzg8sM1w2lzCzfS91Y1Gm4_pW_h-hhN9nu0ya6Ci0G9OQe3Wnp1gPPm1XnbH9pwBS6MbIKe_fUp2D0sd4unZLV-fF7MV4nCmJVJtWeVJrQ0e1wSjElFDcUUK2MKZpiiBBNOCkOw1JIrJDnPtK4Uq6Ki5IRMwc149ujd-6BDL2o3-C4misiBEIowZVGFRpXyLgSvjTj6-Lv_EhkSJ6bil6k4MRWIiuj8AeaqbNo</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Prajapati, Pankaj P.</creator><creator>Shah, Mihir V.</creator><general>Modern Education and Computer Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Performance Estimation of Differential Evolution, Particle Swarm Optimization and Cuckoo Search Algorithms</title><author>Prajapati, Pankaj P. ; Shah, Mihir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2287-db8de367fb273223d6f6262cff58f8c6323935f32aea9c0a991eedc8dcff7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Complex variables</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Evolutionary algorithms</topic><topic>Microprocessors</topic><topic>Particle swarm optimization</topic><topic>Search algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Prajapati, Pankaj P.</creatorcontrib><creatorcontrib>Shah, Mihir V.</creatorcontrib><creatorcontrib>EC Department, L. D. College of Engineering, Ahmedabad, 380001, India</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prajapati, Pankaj P.</au><au>Shah, Mihir V.</au><aucorp>EC Department, L. D. College of Engineering, Ahmedabad, 380001, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Estimation of Differential Evolution, Particle Swarm Optimization and Cuckoo Search Algorithms</atitle><jtitle>International journal of intelligent systems and applications</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>10</volume><issue>6</issue><spage>59</spage><epage>67</epage><pages>59-67</pages><issn>2074-904X</issn><eissn>2074-9058</eissn><abstract>Most design optimization problems in engineering are in general extremely nonlinear and deal with various design variables under complex restrictions. Traditional mathematical optimization procedure may fail to find the optimum solution to real-world problems. Evolutionary Algorithms (EAs) can serve as an efficient approach for these types of optimization problems. In this paper, Particle Swarm Optimization (PSO), Differential Evolution (DE) and Cuckoo Search (CS) algorithms are used to find the optimal solution for some typical unimodal and multimodal benchmark functions. The source codes of all these algorithms are developed using C language and tested on a core i5, 2.4 GHz processor with 8 GB internal RAM. PSO algorithm has a simplicity of implementation and good convergence speed. In contrast, CS algorithm has good ability to find a global optimum solution. To use the advantages of CS and PSO algorithms, a hybrid algorithm of CS and PSO (CSPSO) is implemented and tested with the same benchmark functions. The experimental simulation results obtained by all these algorithms show that hybrid CSPSO outperforms with PSO, DE and CS algorithms.</abstract><cop>Hong Kong</cop><pub>Modern Education and Computer Science Press</pub><doi>10.5815/ijisa.2018.06.07</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2074-904X |
ispartof | International journal of intelligent systems and applications, 2018-06, Vol.10 (6), p.59-67 |
issn | 2074-904X 2074-9058 |
language | eng |
recordid | cdi_proquest_journals_2073360268 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Benchmarks Complex variables Computer simulation Design engineering Design optimization Evolutionary algorithms Microprocessors Particle swarm optimization Search algorithms |
title | Performance Estimation of Differential Evolution, Particle Swarm Optimization and Cuckoo Search Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Estimation%20of%20Differential%20Evolution,%20Particle%20Swarm%20Optimization%20and%20Cuckoo%20Search%20Algorithms&rft.jtitle=International%20journal%20of%20intelligent%20systems%20and%20applications&rft.au=Prajapati,%20Pankaj%20P.&rft.aucorp=EC%20Department,%20L.%20D.%20College%20of%20Engineering,%20Ahmedabad,%20380001,%20India&rft.date=2018-06-01&rft.volume=10&rft.issue=6&rft.spage=59&rft.epage=67&rft.pages=59-67&rft.issn=2074-904X&rft.eissn=2074-9058&rft_id=info:doi/10.5815/ijisa.2018.06.07&rft_dat=%3Cproquest_cross%3E2073360268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073360268&rft_id=info:pmid/&rfr_iscdi=true |