Attractiveness of Brownian queues in tandem

Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-03
Hauptverfasser: Cator, Eric A, Lopez, Sergio I, Pimentel, Leandro P R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cator, Eric A
Lopez, Sergio I
Pimentel, Leandro P R
description Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073333276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073333276</sourcerecordid><originalsourceid>FETCH-proquest_journals_20733332763</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdiwpKUpMLsksS81LLS5WyE9TcCrKL8_LTMxTKCxNLU0tVsjMUyhJzEtJzeVhYE1LzClO5YXS3AzKbq4hzh66BUX5QLXFJfFZ-aVFeUCpeCMDc2MgMDI3MyZOFQBojDFl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073333276</pqid></control><display><type>article</type><title>Attractiveness of Brownian queues in tandem</title><source>Free E- Journals</source><creator>Cator, Eric A ; Lopez, Sergio I ; Pimentel, Leandro P R</creator><creatorcontrib>Cator, Eric A ; Lopez, Sergio I ; Pimentel, Leandro P R</creatorcontrib><description>Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Ergodic processes ; Markov analysis ; Percolation ; Queues ; Queuing theory</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cator, Eric A</creatorcontrib><creatorcontrib>Lopez, Sergio I</creatorcontrib><creatorcontrib>Pimentel, Leandro P R</creatorcontrib><title>Attractiveness of Brownian queues in tandem</title><title>arXiv.org</title><description>Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection.</description><subject>Brownian motion</subject><subject>Ergodic processes</subject><subject>Markov analysis</subject><subject>Percolation</subject><subject>Queues</subject><subject>Queuing theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdiwpKUpMLsksS81LLS5WyE9TcCrKL8_LTMxTKCxNLU0tVsjMUyhJzEtJzeVhYE1LzClO5YXS3AzKbq4hzh66BUX5QLXFJfFZ-aVFeUCpeCMDc2MgMDI3MyZOFQBojDFl</recordid><startdate>20190312</startdate><enddate>20190312</enddate><creator>Cator, Eric A</creator><creator>Lopez, Sergio I</creator><creator>Pimentel, Leandro P R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190312</creationdate><title>Attractiveness of Brownian queues in tandem</title><author>Cator, Eric A ; Lopez, Sergio I ; Pimentel, Leandro P R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20733332763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brownian motion</topic><topic>Ergodic processes</topic><topic>Markov analysis</topic><topic>Percolation</topic><topic>Queues</topic><topic>Queuing theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Cator, Eric A</creatorcontrib><creatorcontrib>Lopez, Sergio I</creatorcontrib><creatorcontrib>Pimentel, Leandro P R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cator, Eric A</au><au>Lopez, Sergio I</au><au>Pimentel, Leandro P R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Attractiveness of Brownian queues in tandem</atitle><jtitle>arXiv.org</jtitle><date>2019-03-12</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073333276
source Free E- Journals
subjects Brownian motion
Ergodic processes
Markov analysis
Percolation
Queues
Queuing theory
title Attractiveness of Brownian queues in tandem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Attractiveness%20of%20Brownian%20queues%20in%20tandem&rft.jtitle=arXiv.org&rft.au=Cator,%20Eric%20A&rft.date=2019-03-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073333276%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073333276&rft_id=info:pmid/&rfr_iscdi=true