Attractiveness of Brownian queues in tandem
Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cator, Eric A Lopez, Sergio I Pimentel, Leandro P R |
description | Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073333276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073333276</sourcerecordid><originalsourceid>FETCH-proquest_journals_20733332763</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdiwpKUpMLsksS81LLS5WyE9TcCrKL8_LTMxTKCxNLU0tVsjMUyhJzEtJzeVhYE1LzClO5YXS3AzKbq4hzh66BUX5QLXFJfFZ-aVFeUCpeCMDc2MgMDI3MyZOFQBojDFl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073333276</pqid></control><display><type>article</type><title>Attractiveness of Brownian queues in tandem</title><source>Free E- Journals</source><creator>Cator, Eric A ; Lopez, Sergio I ; Pimentel, Leandro P R</creator><creatorcontrib>Cator, Eric A ; Lopez, Sergio I ; Pimentel, Leandro P R</creatorcontrib><description>Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Ergodic processes ; Markov analysis ; Percolation ; Queues ; Queuing theory</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cator, Eric A</creatorcontrib><creatorcontrib>Lopez, Sergio I</creatorcontrib><creatorcontrib>Pimentel, Leandro P R</creatorcontrib><title>Attractiveness of Brownian queues in tandem</title><title>arXiv.org</title><description>Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection.</description><subject>Brownian motion</subject><subject>Ergodic processes</subject><subject>Markov analysis</subject><subject>Percolation</subject><subject>Queues</subject><subject>Queuing theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdiwpKUpMLsksS81LLS5WyE9TcCrKL8_LTMxTKCxNLU0tVsjMUyhJzEtJzeVhYE1LzClO5YXS3AzKbq4hzh66BUX5QLXFJfFZ-aVFeUCpeCMDc2MgMDI3MyZOFQBojDFl</recordid><startdate>20190312</startdate><enddate>20190312</enddate><creator>Cator, Eric A</creator><creator>Lopez, Sergio I</creator><creator>Pimentel, Leandro P R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190312</creationdate><title>Attractiveness of Brownian queues in tandem</title><author>Cator, Eric A ; Lopez, Sergio I ; Pimentel, Leandro P R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20733332763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brownian motion</topic><topic>Ergodic processes</topic><topic>Markov analysis</topic><topic>Percolation</topic><topic>Queues</topic><topic>Queuing theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Cator, Eric A</creatorcontrib><creatorcontrib>Lopez, Sergio I</creatorcontrib><creatorcontrib>Pimentel, Leandro P R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cator, Eric A</au><au>Lopez, Sergio I</au><au>Pimentel, Leandro P R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Attractiveness of Brownian queues in tandem</atitle><jtitle>arXiv.org</jtitle><date>2019-03-12</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Consider a sequence of n bi-infinite and stationary Brownian queues in tandem. Assume that the arrival process entering in the first queue is a zero mean ergodic process. We prove that the departure process from the n-th queue converges in distribution to a Brownian motion as n goes to infinity. In particular this implies that the Brownian motion is an attractive invariant measure for the Brownian queueing operator. Our proof exploits the relationship between the Brownian queues in tandem and the last-passage Brownian percolation model, developing a coupling technique in the second setting. The result is also interpreted in the related context of Brownian particles acting under one sided reflection.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073333276 |
source | Free E- Journals |
subjects | Brownian motion Ergodic processes Markov analysis Percolation Queues Queuing theory |
title | Attractiveness of Brownian queues in tandem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Attractiveness%20of%20Brownian%20queues%20in%20tandem&rft.jtitle=arXiv.org&rft.au=Cator,%20Eric%20A&rft.date=2019-03-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073333276%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073333276&rft_id=info:pmid/&rfr_iscdi=true |