Generalized Ohm's law for relativistic plasmas

We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial componen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2008-04, Vol.385 (2), p.883-892
Hauptverfasser: Kandus, A., Tsagas, C. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 2
container_start_page 883
container_title Monthly notices of the Royal Astronomical Society
container_volume 385
creator Kandus, A.
Tsagas, C. G.
description We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton–electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.
doi_str_mv 10.1111/j.1365-2966.2008.12862.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_207331114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2008.12862.x</oup_id><sourcerecordid>1445459281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5032-12127d06632e7890f0f06114ca188ae482ede44045acc3b84c4120260c99366c3</originalsourceid><addsrcrecordid>eNqNkFtLAzEQhYMoWKv_YRHEp10nl81mXwQp2grVghcQX4aYZnHrtluT1rb-etNu6ZOCk4cJ5Jwzk4-QiEJCQ12MEsplGrNcyoQBqIQyJVmy3COt3cM-aQHwNFYZpYfkyPsRAAjOZIskXTuxTlfltx1Gg_fxuY8qvYiK2kXOVnpWfpV-VppoWmk_1v6YHBS68vZk29vk-eb6qdOL-4PubeeqH5sUOIspoywbgpSc2UzlUIQjKRVGU6W0FYrZoRUCRKqN4W9KGEEZMAkmz7mUhrfJaZM7dfXn3PoZjuq5m4SRyCDjPPxcBJFqRMbV3jtb4NSVY-1WSAHXcHCEawa4ZoBrOLiBg8tgPdvma290VTg9MaXf-cMukDGgQXfZ6BZlZVf_zse7-4fNNQTwJqCeT_-wx7-tFzeuAN8udz7tPlBmPEux9_KKNGdCPHYYCv4DMZaSfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207331114</pqid></control><display><type>article</type><title>Generalized Ohm's law for relativistic plasmas</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kandus, A. ; Tsagas, C. G.</creator><creatorcontrib>Kandus, A. ; Tsagas, C. G.</creatorcontrib><description>We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton–electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2008.12862.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Astronomy ; Astrophysics ; Earth, ocean, space ; Electrons ; Exact sciences and technology ; MHD ; Plasma ; plasmas ; Protons ; relativity</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2008-04, Vol.385 (2), p.883-892</ispartof><rights>2008 The Authors. Journal compilation © 2008 RAS 2008</rights><rights>2008 The Authors. Journal compilation © 2008 RAS</rights><rights>2008 INIST-CNRS</rights><rights>Journal compilation © 2008 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5032-12127d06632e7890f0f06114ca188ae482ede44045acc3b84c4120260c99366c3</citedby><cites>FETCH-LOGICAL-c5032-12127d06632e7890f0f06114ca188ae482ede44045acc3b84c4120260c99366c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2008.12862.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2008.12862.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20207201$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kandus, A.</creatorcontrib><creatorcontrib>Tsagas, C. G.</creatorcontrib><title>Generalized Ohm's law for relativistic plasmas</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton–electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>MHD</subject><subject>Plasma</subject><subject>plasmas</subject><subject>Protons</subject><subject>relativity</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkFtLAzEQhYMoWKv_YRHEp10nl81mXwQp2grVghcQX4aYZnHrtluT1rb-etNu6ZOCk4cJ5Jwzk4-QiEJCQ12MEsplGrNcyoQBqIQyJVmy3COt3cM-aQHwNFYZpYfkyPsRAAjOZIskXTuxTlfltx1Gg_fxuY8qvYiK2kXOVnpWfpV-VppoWmk_1v6YHBS68vZk29vk-eb6qdOL-4PubeeqH5sUOIspoywbgpSc2UzlUIQjKRVGU6W0FYrZoRUCRKqN4W9KGEEZMAkmz7mUhrfJaZM7dfXn3PoZjuq5m4SRyCDjPPxcBJFqRMbV3jtb4NSVY-1WSAHXcHCEawa4ZoBrOLiBg8tgPdvma290VTg9MaXf-cMukDGgQXfZ6BZlZVf_zse7-4fNNQTwJqCeT_-wx7-tFzeuAN8udz7tPlBmPEux9_KKNGdCPHYYCv4DMZaSfA</recordid><startdate>200804</startdate><enddate>200804</enddate><creator>Kandus, A.</creator><creator>Tsagas, C. G.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200804</creationdate><title>Generalized Ohm's law for relativistic plasmas</title><author>Kandus, A. ; Tsagas, C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5032-12127d06632e7890f0f06114ca188ae482ede44045acc3b84c4120260c99366c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>MHD</topic><topic>Plasma</topic><topic>plasmas</topic><topic>Protons</topic><topic>relativity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandus, A.</creatorcontrib><creatorcontrib>Tsagas, C. G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandus, A.</au><au>Tsagas, C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Ohm's law for relativistic plasmas</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><date>2008-04</date><risdate>2008</risdate><volume>385</volume><issue>2</issue><spage>883</spage><epage>892</epage><pages>883-892</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton–electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2008.12862.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2008-04, Vol.385 (2), p.883-892
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_207331114
source Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete
subjects Astronomy
Astrophysics
Earth, ocean, space
Electrons
Exact sciences and technology
MHD
Plasma
plasmas
Protons
relativity
title Generalized Ohm's law for relativistic plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Ohm's%20law%20for%20relativistic%20plasmas&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Kandus,%20A.&rft.date=2008-04&rft.volume=385&rft.issue=2&rft.spage=883&rft.epage=892&rft.pages=883-892&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2008.12862.x&rft_dat=%3Cproquest_cross%3E1445459281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207331114&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2008.12862.x&rfr_iscdi=true