Probabilistic neural network approach for porosity prediction in Balkassar area: a case study

The current study predicts the reservoir porosity using 3D seismic data and well logs of the Balkassar Oil field. [...]to obtain acoustic impedance volume, the 3D seismic data is inverted and applied to the data set by using as a part of seismic attribute study. Artificial Neural Network Results for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Himalayan earth sciences 2017, Vol.50 (1), p.111-120
Hauptverfasser: Mahmood, Muhammad Fahad, Shakir, Urooj, Abuzar, Muhammad Khubaib, Khan, Mumtaz Ali, Khattak, Nimat Ullah, Hussain, Hafiz Shahid, Tahir, Abdul Rehman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study predicts the reservoir porosity using 3D seismic data and well logs of the Balkassar Oil field. [...]to obtain acoustic impedance volume, the 3D seismic data is inverted and applied to the data set by using as a part of seismic attribute study. Artificial Neural Network Results for Porosity Prediction In order to perform the multi attribute analysis, the neural network based inversionis used to generate the impedance volume (Sen, 2006). In this study, the artificial Neural Network Approach proved to be fruitful for porosity prediction by using the well log data of Balkassar Oxy-01 and Oxy-02 wells. The high degree of correlation between actual and artificial neural network predicted porosity helped in reservoir characterization of Balkassar anticline at Eocene and Paleocene levels.
ISSN:1994-3237
1994-3237