Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
We present a personalized and reliable prediction model for healthcare, which can provide individually tailored medical services such as diagnosis, disease treatment, and prevention. Our proposed framework targets at making personalized and reliable predictions from time-series data, such as Electro...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chung, Ingyo Kim, Saehoon Lee, Juho Kim, Kwang Joon Hwang, Sung Ju Yang, Eunho |
description | We present a personalized and reliable prediction model for healthcare, which can provide individually tailored medical services such as diagnosis, disease treatment, and prevention. Our proposed framework targets at making personalized and reliable predictions from time-series data, such as Electronic Health Records (EHR), by modeling two complementary components: i) a shared component that captures global trend across diverse patients and ii) a patient-specific component that models idiosyncratic variability for each patient. To this end, we propose a composite model of a deep neural network to learn complex global trends from the large number of patients, and Gaussian Processes (GP) to probabilistically model individual time-series given relatively small number of visits per patient. We evaluate our model on diverse and heterogeneous tasks from EHR datasets and show practical advantages over standard time-series deep models such as pure Recurrent Neural Network (RNN). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073244692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073244692</sourcerecordid><originalsourceid>FETCH-proquest_journals_20732446923</originalsourceid><addsrcrecordid>eNqNjMsKgkAUQIcgSMp_uNBasBkf1S7KciNEtJdJrzYyzNhchejrc9EHtDqbc86MeVyITbCNOF8wn6gLw5AnKY9j4bH2hNhDod5YQ9Y0WA1Q2Bo1jKRMCxc5Eilp4OpshURIezjAFR1ZI7X6TJU0NdxQK_nQOGlYq2pQ1kBjHeQo9fCspMMVmzdSE_o_Ltn6nN2PedA7-xqRhrKzo5ueVPIwFTyKkh0X_1lffAZGrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073244692</pqid></control><display><type>article</type><title>Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare</title><source>Freely Accessible Journals</source><creator>Chung, Ingyo ; Kim, Saehoon ; Lee, Juho ; Kim, Kwang Joon ; Hwang, Sung Ju ; Yang, Eunho</creator><creatorcontrib>Chung, Ingyo ; Kim, Saehoon ; Lee, Juho ; Kim, Kwang Joon ; Hwang, Sung Ju ; Yang, Eunho</creatorcontrib><description>We present a personalized and reliable prediction model for healthcare, which can provide individually tailored medical services such as diagnosis, disease treatment, and prevention. Our proposed framework targets at making personalized and reliable predictions from time-series data, such as Electronic Health Records (EHR), by modeling two complementary components: i) a shared component that captures global trend across diverse patients and ii) a patient-specific component that models idiosyncratic variability for each patient. To this end, we propose a composite model of a deep neural network to learn complex global trends from the large number of patients, and Gaussian Processes (GP) to probabilistically model individual time-series given relatively small number of visits per patient. We evaluate our model on diverse and heterogeneous tasks from EHR datasets and show practical advantages over standard time-series deep models such as pure Recurrent Neural Network (RNN).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electronic health records ; Gaussian distribution ; Gaussian process ; Health care ; Health services ; Mathematical models ; Neural networks ; Patients ; Recurrent neural networks</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Chung, Ingyo</creatorcontrib><creatorcontrib>Kim, Saehoon</creatorcontrib><creatorcontrib>Lee, Juho</creatorcontrib><creatorcontrib>Kim, Kwang Joon</creatorcontrib><creatorcontrib>Hwang, Sung Ju</creatorcontrib><creatorcontrib>Yang, Eunho</creatorcontrib><title>Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare</title><title>arXiv.org</title><description>We present a personalized and reliable prediction model for healthcare, which can provide individually tailored medical services such as diagnosis, disease treatment, and prevention. Our proposed framework targets at making personalized and reliable predictions from time-series data, such as Electronic Health Records (EHR), by modeling two complementary components: i) a shared component that captures global trend across diverse patients and ii) a patient-specific component that models idiosyncratic variability for each patient. To this end, we propose a composite model of a deep neural network to learn complex global trends from the large number of patients, and Gaussian Processes (GP) to probabilistically model individual time-series given relatively small number of visits per patient. We evaluate our model on diverse and heterogeneous tasks from EHR datasets and show practical advantages over standard time-series deep models such as pure Recurrent Neural Network (RNN).</description><subject>Electronic health records</subject><subject>Gaussian distribution</subject><subject>Gaussian process</subject><subject>Health care</subject><subject>Health services</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Recurrent neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKgkAUQIcgSMp_uNBasBkf1S7KciNEtJdJrzYyzNhchejrc9EHtDqbc86MeVyITbCNOF8wn6gLw5AnKY9j4bH2hNhDod5YQ9Y0WA1Q2Bo1jKRMCxc5Eilp4OpshURIezjAFR1ZI7X6TJU0NdxQK_nQOGlYq2pQ1kBjHeQo9fCspMMVmzdSE_o_Ltn6nN2PedA7-xqRhrKzo5ueVPIwFTyKkh0X_1lffAZGrA</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Chung, Ingyo</creator><creator>Kim, Saehoon</creator><creator>Lee, Juho</creator><creator>Kim, Kwang Joon</creator><creator>Hwang, Sung Ju</creator><creator>Yang, Eunho</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191125</creationdate><title>Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare</title><author>Chung, Ingyo ; Kim, Saehoon ; Lee, Juho ; Kim, Kwang Joon ; Hwang, Sung Ju ; Yang, Eunho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20732446923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electronic health records</topic><topic>Gaussian distribution</topic><topic>Gaussian process</topic><topic>Health care</topic><topic>Health services</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Recurrent neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chung, Ingyo</creatorcontrib><creatorcontrib>Kim, Saehoon</creatorcontrib><creatorcontrib>Lee, Juho</creatorcontrib><creatorcontrib>Kim, Kwang Joon</creatorcontrib><creatorcontrib>Hwang, Sung Ju</creatorcontrib><creatorcontrib>Yang, Eunho</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Ingyo</au><au>Kim, Saehoon</au><au>Lee, Juho</au><au>Kim, Kwang Joon</au><au>Hwang, Sung Ju</au><au>Yang, Eunho</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare</atitle><jtitle>arXiv.org</jtitle><date>2019-11-25</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We present a personalized and reliable prediction model for healthcare, which can provide individually tailored medical services such as diagnosis, disease treatment, and prevention. Our proposed framework targets at making personalized and reliable predictions from time-series data, such as Electronic Health Records (EHR), by modeling two complementary components: i) a shared component that captures global trend across diverse patients and ii) a patient-specific component that models idiosyncratic variability for each patient. To this end, we propose a composite model of a deep neural network to learn complex global trends from the large number of patients, and Gaussian Processes (GP) to probabilistically model individual time-series given relatively small number of visits per patient. We evaluate our model on diverse and heterogeneous tasks from EHR datasets and show practical advantages over standard time-series deep models such as pure Recurrent Neural Network (RNN).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073244692 |
source | Freely Accessible Journals |
subjects | Electronic health records Gaussian distribution Gaussian process Health care Health services Mathematical models Neural networks Patients Recurrent neural networks |
title | Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Mixed%20Effect%20Model%20using%20Gaussian%20Processes:%20A%20Personalized%20and%20Reliable%20Prediction%20for%20Healthcare&rft.jtitle=arXiv.org&rft.au=Chung,%20Ingyo&rft.date=2019-11-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073244692%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073244692&rft_id=info:pmid/&rfr_iscdi=true |