Diverse Stochasticity Leads a Colony of Ants to Optimal Foraging

A mathematical model of garden ants (Laius japonicus) is introduced herein to investigate the relationship between the distribution of the degree of stochasticity in following pheromone trails and the group foraging efficiency. Numerical simulations of the model indicate that depending on the system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: Shiraishi, Masashi, Takeuchi, Rito, Nakagawa, Hiroyuki, Nishimura, Shin I, Awazu, Akinori, Nishimori, Hiraku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shiraishi, Masashi
Takeuchi, Rito
Nakagawa, Hiroyuki
Nishimura, Shin I
Awazu, Akinori
Nishimori, Hiraku
description A mathematical model of garden ants (Laius japonicus) is introduced herein to investigate the relationship between the distribution of the degree of stochasticity in following pheromone trails and the group foraging efficiency. Numerical simulations of the model indicate that depending on the systematic change of the feeding environment, the optimal distribution of stochasticity shifts from a mixture of almost deterministic and mildly stochastic ants to a contrasted mixture of almost deterministic ants and highly stochastic ants. In addition, the interaction between the stochasticity and the pheromone path regulates the dynamics of the foraging efficiency optimization. Stochasticity could strengthen the collective efficiency when stochasticity to the sensitivity of pheromone for ants is introduced in the model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073243579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073243579</sourcerecordid><originalsourceid>FETCH-proquest_journals_20732435793</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPzxwLsSksbop1eIgOOheQk1rSs2reanQv9fBD3C6w7kTFgkpV8kmFWLGYqKWcy7WmVBKRmx3sG_jycA1YPXQFGxlwwhno-8EGnLs0I2ANexdIAgIlz7Yp-6gQK8b65oFm9a6IxP_OmfL4njLT0nv8TUYCmWLg3dfKgXPpEilyrbyv-sD_NE4hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073243579</pqid></control><display><type>article</type><title>Diverse Stochasticity Leads a Colony of Ants to Optimal Foraging</title><source>World Web Journals</source><creator>Shiraishi, Masashi ; Takeuchi, Rito ; Nakagawa, Hiroyuki ; Nishimura, Shin I ; Awazu, Akinori ; Nishimori, Hiraku</creator><creatorcontrib>Shiraishi, Masashi ; Takeuchi, Rito ; Nakagawa, Hiroyuki ; Nishimura, Shin I ; Awazu, Akinori ; Nishimori, Hiraku</creatorcontrib><description>A mathematical model of garden ants (Laius japonicus) is introduced herein to investigate the relationship between the distribution of the degree of stochasticity in following pheromone trails and the group foraging efficiency. Numerical simulations of the model indicate that depending on the systematic change of the feeding environment, the optimal distribution of stochasticity shifts from a mixture of almost deterministic and mildly stochastic ants to a contrasted mixture of almost deterministic ants and highly stochastic ants. In addition, the interaction between the stochasticity and the pheromone path regulates the dynamics of the foraging efficiency optimization. Stochasticity could strengthen the collective efficiency when stochasticity to the sensitivity of pheromone for ants is introduced in the model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Animal behavior ; Ants ; Computer simulation ; Efficiency ; Mathematical models ; Pheromones</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shiraishi, Masashi</creatorcontrib><creatorcontrib>Takeuchi, Rito</creatorcontrib><creatorcontrib>Nakagawa, Hiroyuki</creatorcontrib><creatorcontrib>Nishimura, Shin I</creatorcontrib><creatorcontrib>Awazu, Akinori</creatorcontrib><creatorcontrib>Nishimori, Hiraku</creatorcontrib><title>Diverse Stochasticity Leads a Colony of Ants to Optimal Foraging</title><title>arXiv.org</title><description>A mathematical model of garden ants (Laius japonicus) is introduced herein to investigate the relationship between the distribution of the degree of stochasticity in following pheromone trails and the group foraging efficiency. Numerical simulations of the model indicate that depending on the systematic change of the feeding environment, the optimal distribution of stochasticity shifts from a mixture of almost deterministic and mildly stochastic ants to a contrasted mixture of almost deterministic ants and highly stochastic ants. In addition, the interaction between the stochasticity and the pheromone path regulates the dynamics of the foraging efficiency optimization. Stochasticity could strengthen the collective efficiency when stochasticity to the sensitivity of pheromone for ants is introduced in the model.</description><subject>Animal behavior</subject><subject>Ants</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Mathematical models</subject><subject>Pheromones</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPzxwLsSksbop1eIgOOheQk1rSs2reanQv9fBD3C6w7kTFgkpV8kmFWLGYqKWcy7WmVBKRmx3sG_jycA1YPXQFGxlwwhno-8EGnLs0I2ANexdIAgIlz7Yp-6gQK8b65oFm9a6IxP_OmfL4njLT0nv8TUYCmWLg3dfKgXPpEilyrbyv-sD_NE4hQ</recordid><startdate>20190104</startdate><enddate>20190104</enddate><creator>Shiraishi, Masashi</creator><creator>Takeuchi, Rito</creator><creator>Nakagawa, Hiroyuki</creator><creator>Nishimura, Shin I</creator><creator>Awazu, Akinori</creator><creator>Nishimori, Hiraku</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190104</creationdate><title>Diverse Stochasticity Leads a Colony of Ants to Optimal Foraging</title><author>Shiraishi, Masashi ; Takeuchi, Rito ; Nakagawa, Hiroyuki ; Nishimura, Shin I ; Awazu, Akinori ; Nishimori, Hiraku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20732435793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal behavior</topic><topic>Ants</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Mathematical models</topic><topic>Pheromones</topic><toplevel>online_resources</toplevel><creatorcontrib>Shiraishi, Masashi</creatorcontrib><creatorcontrib>Takeuchi, Rito</creatorcontrib><creatorcontrib>Nakagawa, Hiroyuki</creatorcontrib><creatorcontrib>Nishimura, Shin I</creatorcontrib><creatorcontrib>Awazu, Akinori</creatorcontrib><creatorcontrib>Nishimori, Hiraku</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiraishi, Masashi</au><au>Takeuchi, Rito</au><au>Nakagawa, Hiroyuki</au><au>Nishimura, Shin I</au><au>Awazu, Akinori</au><au>Nishimori, Hiraku</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Diverse Stochasticity Leads a Colony of Ants to Optimal Foraging</atitle><jtitle>arXiv.org</jtitle><date>2019-01-04</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>A mathematical model of garden ants (Laius japonicus) is introduced herein to investigate the relationship between the distribution of the degree of stochasticity in following pheromone trails and the group foraging efficiency. Numerical simulations of the model indicate that depending on the systematic change of the feeding environment, the optimal distribution of stochasticity shifts from a mixture of almost deterministic and mildly stochastic ants to a contrasted mixture of almost deterministic ants and highly stochastic ants. In addition, the interaction between the stochasticity and the pheromone path regulates the dynamics of the foraging efficiency optimization. Stochasticity could strengthen the collective efficiency when stochasticity to the sensitivity of pheromone for ants is introduced in the model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073243579
source World Web Journals
subjects Animal behavior
Ants
Computer simulation
Efficiency
Mathematical models
Pheromones
title Diverse Stochasticity Leads a Colony of Ants to Optimal Foraging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Diverse%20Stochasticity%20Leads%20a%20Colony%20of%20Ants%20to%20Optimal%20Foraging&rft.jtitle=arXiv.org&rft.au=Shiraishi,%20Masashi&rft.date=2019-01-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073243579%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073243579&rft_id=info:pmid/&rfr_iscdi=true