Statistical evaluation of mathematics lecture performances by soft computing approach
Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In or...
Gespeichert in:
Veröffentlicht in: | Computer applications in engineering education 2018-07, Vol.26 (4), p.902-905 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 905 |
---|---|
container_issue | 4 |
container_start_page | 902 |
container_title | Computer applications in engineering education |
container_volume | 26 |
creator | Gavrilović, Snežana Denić, Nebojša Petković, Dalibor Živić, Nebojša V. Vujičić, Slađana |
description | Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture. |
doi_str_mv | 10.1002/cae.21931 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073224783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073224783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqUw8A8sMTGE-pHY9VhV5SFVYoDO1o3r0FRJHGwH1H-PQ1hZ7kP67jlXB6FbSh4oIWxhwD4wqjg9QzNKlMpIkbPzcRY041LyS3QVwpEQogRXM7R7ixDrEGsDDbZf0AxpdR12FW4hHmwqtQm4sSYO3uLe-sr5FjpjAy5POLgqYuPafoh194Gh770Dc7hGFxU0wd789TnaPW7e18_Z9vXpZb3aZoYpSbM9MCm4sKQsJEguqOSsoExWJZGwz1UO-_FPVZRLKouCypxAZQVVqsi5UJzP0d2km2w_BxuiPrrBd8lSM5LEWC6XI3U_Uca7ELytdO_rFvxJU6LH1HRKTf-mltjFxH7XjT39D-r1ajNd_ADcU21E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073224783</pqid></control><display><type>article</type><title>Statistical evaluation of mathematics lecture performances by soft computing approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gavrilović, Snežana ; Denić, Nebojša ; Petković, Dalibor ; Živić, Nebojša V. ; Vujičić, Slađana</creator><creatorcontrib>Gavrilović, Snežana ; Denić, Nebojša ; Petković, Dalibor ; Živić, Nebojša V. ; Vujičić, Slađana</creatorcontrib><description>Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture.</description><identifier>ISSN: 1061-3773</identifier><identifier>EISSN: 1099-0542</identifier><identifier>DOI: 10.1002/cae.21931</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adaptive systems ; Artificial neural networks ; Education ; education software ; Fuzzy logic ; Fuzzy systems ; Mathematical analysis ; Mathematics ; mathematics lecture ; Public speaking ; Soft computing ; Statistical analysis ; teaching</subject><ispartof>Computer applications in engineering education, 2018-07, Vol.26 (4), p.902-905</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</citedby><cites>FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</cites><orcidid>0000-0003-1680-1163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcae.21931$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcae.21931$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Gavrilović, Snežana</creatorcontrib><creatorcontrib>Denić, Nebojša</creatorcontrib><creatorcontrib>Petković, Dalibor</creatorcontrib><creatorcontrib>Živić, Nebojša V.</creatorcontrib><creatorcontrib>Vujičić, Slađana</creatorcontrib><title>Statistical evaluation of mathematics lecture performances by soft computing approach</title><title>Computer applications in engineering education</title><description>Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Education</subject><subject>education software</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>mathematics lecture</subject><subject>Public speaking</subject><subject>Soft computing</subject><subject>Statistical analysis</subject><subject>teaching</subject><issn>1061-3773</issn><issn>1099-0542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqUw8A8sMTGE-pHY9VhV5SFVYoDO1o3r0FRJHGwH1H-PQ1hZ7kP67jlXB6FbSh4oIWxhwD4wqjg9QzNKlMpIkbPzcRY041LyS3QVwpEQogRXM7R7ixDrEGsDDbZf0AxpdR12FW4hHmwqtQm4sSYO3uLe-sr5FjpjAy5POLgqYuPafoh194Gh770Dc7hGFxU0wd789TnaPW7e18_Z9vXpZb3aZoYpSbM9MCm4sKQsJEguqOSsoExWJZGwz1UO-_FPVZRLKouCypxAZQVVqsi5UJzP0d2km2w_BxuiPrrBd8lSM5LEWC6XI3U_Uca7ELytdO_rFvxJU6LH1HRKTf-mltjFxH7XjT39D-r1ajNd_ADcU21E</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Gavrilović, Snežana</creator><creator>Denić, Nebojša</creator><creator>Petković, Dalibor</creator><creator>Živić, Nebojša V.</creator><creator>Vujičić, Slađana</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1680-1163</orcidid></search><sort><creationdate>201807</creationdate><title>Statistical evaluation of mathematics lecture performances by soft computing approach</title><author>Gavrilović, Snežana ; Denić, Nebojša ; Petković, Dalibor ; Živić, Nebojša V. ; Vujičić, Slađana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Education</topic><topic>education software</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>mathematics lecture</topic><topic>Public speaking</topic><topic>Soft computing</topic><topic>Statistical analysis</topic><topic>teaching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavrilović, Snežana</creatorcontrib><creatorcontrib>Denić, Nebojša</creatorcontrib><creatorcontrib>Petković, Dalibor</creatorcontrib><creatorcontrib>Živić, Nebojša V.</creatorcontrib><creatorcontrib>Vujičić, Slađana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer applications in engineering education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavrilović, Snežana</au><au>Denić, Nebojša</au><au>Petković, Dalibor</au><au>Živić, Nebojša V.</au><au>Vujičić, Slađana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical evaluation of mathematics lecture performances by soft computing approach</atitle><jtitle>Computer applications in engineering education</jtitle><date>2018-07</date><risdate>2018</risdate><volume>26</volume><issue>4</issue><spage>902</spage><epage>905</epage><pages>902-905</pages><issn>1061-3773</issn><eissn>1099-0542</eissn><abstract>Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cae.21931</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1680-1163</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-3773 |
ispartof | Computer applications in engineering education, 2018-07, Vol.26 (4), p.902-905 |
issn | 1061-3773 1099-0542 |
language | eng |
recordid | cdi_proquest_journals_2073224783 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptive systems Artificial neural networks Education education software Fuzzy logic Fuzzy systems Mathematical analysis Mathematics mathematics lecture Public speaking Soft computing Statistical analysis teaching |
title | Statistical evaluation of mathematics lecture performances by soft computing approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20evaluation%20of%20mathematics%20lecture%20performances%20by%20soft%20computing%20approach&rft.jtitle=Computer%20applications%20in%20engineering%20education&rft.au=Gavrilovi%C4%87,%20Sne%C5%BEana&rft.date=2018-07&rft.volume=26&rft.issue=4&rft.spage=902&rft.epage=905&rft.pages=902-905&rft.issn=1061-3773&rft.eissn=1099-0542&rft_id=info:doi/10.1002/cae.21931&rft_dat=%3Cproquest_cross%3E2073224783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073224783&rft_id=info:pmid/&rfr_iscdi=true |