Statistical evaluation of mathematics lecture performances by soft computing approach

Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer applications in engineering education 2018-07, Vol.26 (4), p.902-905
Hauptverfasser: Gavrilović, Snežana, Denić, Nebojša, Petković, Dalibor, Živić, Nebojša V., Vujičić, Slađana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 905
container_issue 4
container_start_page 902
container_title Computer applications in engineering education
container_volume 26
creator Gavrilović, Snežana
Denić, Nebojša
Petković, Dalibor
Živić, Nebojša V.
Vujičić, Slađana
description Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture.
doi_str_mv 10.1002/cae.21931
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073224783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073224783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqUw8A8sMTGE-pHY9VhV5SFVYoDO1o3r0FRJHGwH1H-PQ1hZ7kP67jlXB6FbSh4oIWxhwD4wqjg9QzNKlMpIkbPzcRY041LyS3QVwpEQogRXM7R7ixDrEGsDDbZf0AxpdR12FW4hHmwqtQm4sSYO3uLe-sr5FjpjAy5POLgqYuPafoh194Gh770Dc7hGFxU0wd789TnaPW7e18_Z9vXpZb3aZoYpSbM9MCm4sKQsJEguqOSsoExWJZGwz1UO-_FPVZRLKouCypxAZQVVqsi5UJzP0d2km2w_BxuiPrrBd8lSM5LEWC6XI3U_Uca7ELytdO_rFvxJU6LH1HRKTf-mltjFxH7XjT39D-r1ajNd_ADcU21E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073224783</pqid></control><display><type>article</type><title>Statistical evaluation of mathematics lecture performances by soft computing approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gavrilović, Snežana ; Denić, Nebojša ; Petković, Dalibor ; Živić, Nebojša V. ; Vujičić, Slađana</creator><creatorcontrib>Gavrilović, Snežana ; Denić, Nebojša ; Petković, Dalibor ; Živić, Nebojša V. ; Vujičić, Slađana</creatorcontrib><description>Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture.</description><identifier>ISSN: 1061-3773</identifier><identifier>EISSN: 1099-0542</identifier><identifier>DOI: 10.1002/cae.21931</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adaptive systems ; Artificial neural networks ; Education ; education software ; Fuzzy logic ; Fuzzy systems ; Mathematical analysis ; Mathematics ; mathematics lecture ; Public speaking ; Soft computing ; Statistical analysis ; teaching</subject><ispartof>Computer applications in engineering education, 2018-07, Vol.26 (4), p.902-905</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</citedby><cites>FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</cites><orcidid>0000-0003-1680-1163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcae.21931$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcae.21931$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Gavrilović, Snežana</creatorcontrib><creatorcontrib>Denić, Nebojša</creatorcontrib><creatorcontrib>Petković, Dalibor</creatorcontrib><creatorcontrib>Živić, Nebojša V.</creatorcontrib><creatorcontrib>Vujičić, Slađana</creatorcontrib><title>Statistical evaluation of mathematics lecture performances by soft computing approach</title><title>Computer applications in engineering education</title><description>Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Education</subject><subject>education software</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>mathematics lecture</subject><subject>Public speaking</subject><subject>Soft computing</subject><subject>Statistical analysis</subject><subject>teaching</subject><issn>1061-3773</issn><issn>1099-0542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqUw8A8sMTGE-pHY9VhV5SFVYoDO1o3r0FRJHGwH1H-PQ1hZ7kP67jlXB6FbSh4oIWxhwD4wqjg9QzNKlMpIkbPzcRY041LyS3QVwpEQogRXM7R7ixDrEGsDDbZf0AxpdR12FW4hHmwqtQm4sSYO3uLe-sr5FjpjAy5POLgqYuPafoh194Gh770Dc7hGFxU0wd789TnaPW7e18_Z9vXpZb3aZoYpSbM9MCm4sKQsJEguqOSsoExWJZGwz1UO-_FPVZRLKouCypxAZQVVqsi5UJzP0d2km2w_BxuiPrrBd8lSM5LEWC6XI3U_Uca7ELytdO_rFvxJU6LH1HRKTf-mltjFxH7XjT39D-r1ajNd_ADcU21E</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Gavrilović, Snežana</creator><creator>Denić, Nebojša</creator><creator>Petković, Dalibor</creator><creator>Živić, Nebojša V.</creator><creator>Vujičić, Slađana</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1680-1163</orcidid></search><sort><creationdate>201807</creationdate><title>Statistical evaluation of mathematics lecture performances by soft computing approach</title><author>Gavrilović, Snežana ; Denić, Nebojša ; Petković, Dalibor ; Živić, Nebojša V. ; Vujičić, Slađana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-da27636e0b57a73617325127fb07ad494ad009695b817551740afe61995436933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Education</topic><topic>education software</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>mathematics lecture</topic><topic>Public speaking</topic><topic>Soft computing</topic><topic>Statistical analysis</topic><topic>teaching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavrilović, Snežana</creatorcontrib><creatorcontrib>Denić, Nebojša</creatorcontrib><creatorcontrib>Petković, Dalibor</creatorcontrib><creatorcontrib>Živić, Nebojša V.</creatorcontrib><creatorcontrib>Vujičić, Slađana</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer applications in engineering education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavrilović, Snežana</au><au>Denić, Nebojša</au><au>Petković, Dalibor</au><au>Živić, Nebojša V.</au><au>Vujičić, Slađana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical evaluation of mathematics lecture performances by soft computing approach</atitle><jtitle>Computer applications in engineering education</jtitle><date>2018-07</date><risdate>2018</risdate><volume>26</volume><issue>4</issue><spage>902</spage><epage>905</epage><pages>902-905</pages><issn>1061-3773</issn><eissn>1099-0542</eissn><abstract>Mathematics lectures could be very challenging task for the both, teachers and pupils, since there are large education material which should be acquired throughout 1 year. Therefore there is need to improve the lectures in order to make it more interesting and attractive for pupils especially. In order to find a way how to improve the lectures, there is need to make statistical analysis in order to detect which factors are the most dominant for the mathematics lecture performance. For such a purpose, in this study soft computing approach, namely, adaptive neuro fuzzy inference system (ANFIS) was used. The ANFIS should determine what the qualitative influence of the several factors on the mathematics performance is. The results confirm that the application for education software could produce the best results in mathematics lecture.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cae.21931</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-1680-1163</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-3773
ispartof Computer applications in engineering education, 2018-07, Vol.26 (4), p.902-905
issn 1061-3773
1099-0542
language eng
recordid cdi_proquest_journals_2073224783
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive systems
Artificial neural networks
Education
education software
Fuzzy logic
Fuzzy systems
Mathematical analysis
Mathematics
mathematics lecture
Public speaking
Soft computing
Statistical analysis
teaching
title Statistical evaluation of mathematics lecture performances by soft computing approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20evaluation%20of%20mathematics%20lecture%20performances%20by%20soft%20computing%20approach&rft.jtitle=Computer%20applications%20in%20engineering%20education&rft.au=Gavrilovi%C4%87,%20Sne%C5%BEana&rft.date=2018-07&rft.volume=26&rft.issue=4&rft.spage=902&rft.epage=905&rft.pages=902-905&rft.issn=1061-3773&rft.eissn=1099-0542&rft_id=info:doi/10.1002/cae.21931&rft_dat=%3Cproquest_cross%3E2073224783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073224783&rft_id=info:pmid/&rfr_iscdi=true