Infinitely many solutions for quasilinear elliptic equations with lack of symmetry

In this paper we look for weak solutions of the quasilinear elliptic model problem −div(A(x,u)∇u)+12At(x,u)|∇u|2=g(x,u)+h(x)in Ω,u=0on ∂Ω,where Ω⊂RN is a bounded domain, N≥2, the real terms A(x,t), At(x,t)=∂A∂t(x,t) and g(x,t) are Carathéodory functions on Ω×R and h:Ω→R is a given measurable map. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2018-07, Vol.172, p.141-162
Hauptverfasser: Candela, A.M., Palmieri, G., Salvatore, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we look for weak solutions of the quasilinear elliptic model problem −div(A(x,u)∇u)+12At(x,u)|∇u|2=g(x,u)+h(x)in Ω,u=0on ∂Ω,where Ω⊂RN is a bounded domain, N≥2, the real terms A(x,t), At(x,t)=∂A∂t(x,t) and g(x,t) are Carathéodory functions on Ω×R and h:Ω→R is a given measurable map. We prove that, even if At(x,t)≢0, under suitable assumptions infinitely many solutions exist in spite of the lack of symmetry. A suitable supercritical growth is allowed for the nonlinear term g(x,t). We use a variant of the variational perturbation techniques introduced by Rabinowitz in Rabinowitz (1982) but by means of a weak version of the Cerami–Palais–Smale condition.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2018.02.011