On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations
This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form C D a α y = e ( t ) + f ( t , x ), t ≥ a where 0 < α < 1, a ≥ 0, C D a α y denotes the Caputo fractional derivative of order α of y . The following particular cases are...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2017-12, Vol.226 (16-18), p.3657-3665 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3665 |
---|---|
container_issue | 16-18 |
container_start_page | 3657 |
container_title | The European physical journal. ST, Special topics |
container_volume | 226 |
creator | Grace, Said R. Zafer, Agacik |
description | This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form
C
D
a
α
y
=
e
(
t
) +
f
(
t
,
x
),
t
≥
a
where 0 <
α
< 1,
a
≥ 0,
C
D
a
α
y
denotes the Caputo fractional derivative of order
α
of
y
. The following particular cases are considered:
y
= (
r
(
t
)|
x′
|
δ
-1
x′
)
′
, (
δ
≥ 1),
y
=
x′
,
y
=
x
. We offer a method that can be applied to investigate more general class of fractional differential equations as well. |
doi_str_mv | 10.1140/epjst/e2018-00043-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073035789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073035789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wE3A9djcZDLTLKX4AqEbXYdMemNTppM2yQj9906nijtX9_Wdw-UQcgvsHqBkM9xtUp4hZzAvGGOlKOCMTEBJKKqSwflvL6S8JFcpbRiTFVdiQuyyo3mN1KTDdpdD9pY2uDZfPkQaHO1CF5L1bWtyiAeaQttnH7p0vFmM2fiOumjscWlauvLOYcQu-2HAfW9G-JpcONMmvPmpU_Lx9Pi-eCnels-vi4e3wgrOc2EU8GpVOqvQGAaydhKsmFes4aYWTomqUQJASFZxtFI6wWpoUKFDKxyUYkruTr67GPY9pqw3oY_DX0lzVgsmZD1XAyVOlI0hpYhO76LfmnjQwPQxTT2mqcc09ZimhkFVnlRpoLtPjH_e_8m-AQs_fOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073035789</pqid></control><display><type>article</type><title>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Grace, Said R. ; Zafer, Agacik</creator><creatorcontrib>Grace, Said R. ; Zafer, Agacik</creatorcontrib><description>This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form
C
D
a
α
y
=
e
(
t
) +
f
(
t
,
x
),
t
≥
a
where 0 <
α
< 1,
a
≥ 0,
C
D
a
α
y
denotes the Caputo fractional derivative of order
α
of
y
. The following particular cases are considered:
y
= (
r
(
t
)|
x′
|
δ
-1
x′
)
′
, (
δ
≥ 1),
y
=
x′
,
y
=
x
. We offer a method that can be applied to investigate more general class of fractional differential equations as well.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2018-00043-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Asymptotic properties ; Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Differential equations ; Fractional Dynamical Systems - Recent Trends in Theory and Applications ; Materials Science ; Mathematical analysis ; Measurement Science and Instrumentation ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article</subject><ispartof>The European physical journal. ST, Special topics, 2017-12, Vol.226 (16-18), p.3657-3665</ispartof><rights>EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</citedby><cites>FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2018-00043-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2018-00043-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grace, Said R.</creatorcontrib><creatorcontrib>Zafer, Agacik</creatorcontrib><title>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form
C
D
a
α
y
=
e
(
t
) +
f
(
t
,
x
),
t
≥
a
where 0 <
α
< 1,
a
≥ 0,
C
D
a
α
y
denotes the Caputo fractional derivative of order
α
of
y
. The following particular cases are considered:
y
= (
r
(
t
)|
x′
|
δ
-1
x′
)
′
, (
δ
≥ 1),
y
=
x′
,
y
=
x
. We offer a method that can be applied to investigate more general class of fractional differential equations as well.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Fractional Dynamical Systems - Recent Trends in Theory and Applications</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wE3A9djcZDLTLKX4AqEbXYdMemNTppM2yQj9906nijtX9_Wdw-UQcgvsHqBkM9xtUp4hZzAvGGOlKOCMTEBJKKqSwflvL6S8JFcpbRiTFVdiQuyyo3mN1KTDdpdD9pY2uDZfPkQaHO1CF5L1bWtyiAeaQttnH7p0vFmM2fiOumjscWlauvLOYcQu-2HAfW9G-JpcONMmvPmpU_Lx9Pi-eCnels-vi4e3wgrOc2EU8GpVOqvQGAaydhKsmFes4aYWTomqUQJASFZxtFI6wWpoUKFDKxyUYkruTr67GPY9pqw3oY_DX0lzVgsmZD1XAyVOlI0hpYhO76LfmnjQwPQxTT2mqcc09ZimhkFVnlRpoLtPjH_e_8m-AQs_fOc</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Grace, Said R.</creator><creator>Zafer, Agacik</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</title><author>Grace, Said R. ; Zafer, Agacik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Fractional Dynamical Systems - Recent Trends in Theory and Applications</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grace, Said R.</creatorcontrib><creatorcontrib>Zafer, Agacik</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grace, Said R.</au><au>Zafer, Agacik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>226</volume><issue>16-18</issue><spage>3657</spage><epage>3665</epage><pages>3657-3665</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form
C
D
a
α
y
=
e
(
t
) +
f
(
t
,
x
),
t
≥
a
where 0 <
α
< 1,
a
≥ 0,
C
D
a
α
y
denotes the Caputo fractional derivative of order
α
of
y
. The following particular cases are considered:
y
= (
r
(
t
)|
x′
|
δ
-1
x′
)
′
, (
δ
≥ 1),
y
=
x′
,
y
=
x
. We offer a method that can be applied to investigate more general class of fractional differential equations as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2018-00043-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2017-12, Vol.226 (16-18), p.3657-3665 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_journals_2073035789 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymptotic methods Asymptotic properties Atomic Classical and Continuum Physics Condensed Matter Physics Differential equations Fractional Dynamical Systems - Recent Trends in Theory and Applications Materials Science Mathematical analysis Measurement Science and Instrumentation Molecular Optical and Plasma Physics Physics Physics and Astronomy Regular Article |
title | On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20asymptotic%20behavior%20of%20nonoscillatory%20solutions%20of%20certain%20fractional%20differential%20equations&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Grace,%20Said%20R.&rft.date=2017-12-01&rft.volume=226&rft.issue=16-18&rft.spage=3657&rft.epage=3665&rft.pages=3657-3665&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2018-00043-1&rft_dat=%3Cproquest_cross%3E2073035789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073035789&rft_id=info:pmid/&rfr_iscdi=true |