On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations

This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form C D a α y = e ( t ) + f ( t , x ),   t ≥ a where 0 < α < 1, a ≥ 0,  C D a α y denotes the Caputo fractional derivative of order α of y . The following particular cases are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2017-12, Vol.226 (16-18), p.3657-3665
Hauptverfasser: Grace, Said R., Zafer, Agacik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3665
container_issue 16-18
container_start_page 3657
container_title The European physical journal. ST, Special topics
container_volume 226
creator Grace, Said R.
Zafer, Agacik
description This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form C D a α y = e ( t ) + f ( t , x ),   t ≥ a where 0 < α < 1, a ≥ 0,  C D a α y denotes the Caputo fractional derivative of order α of y . The following particular cases are considered: y = ( r ( t )| x′ | δ -1 x′ ) ′ ,  ( δ ≥ 1),    y = x′ ,   y = x . We offer a method that can be applied to investigate more general class of fractional differential equations as well.
doi_str_mv 10.1140/epjst/e2018-00043-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2073035789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073035789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wE3A9djcZDLTLKX4AqEbXYdMemNTppM2yQj9906nijtX9_Wdw-UQcgvsHqBkM9xtUp4hZzAvGGOlKOCMTEBJKKqSwflvL6S8JFcpbRiTFVdiQuyyo3mN1KTDdpdD9pY2uDZfPkQaHO1CF5L1bWtyiAeaQttnH7p0vFmM2fiOumjscWlauvLOYcQu-2HAfW9G-JpcONMmvPmpU_Lx9Pi-eCnels-vi4e3wgrOc2EU8GpVOqvQGAaydhKsmFes4aYWTomqUQJASFZxtFI6wWpoUKFDKxyUYkruTr67GPY9pqw3oY_DX0lzVgsmZD1XAyVOlI0hpYhO76LfmnjQwPQxTT2mqcc09ZimhkFVnlRpoLtPjH_e_8m-AQs_fOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073035789</pqid></control><display><type>article</type><title>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Grace, Said R. ; Zafer, Agacik</creator><creatorcontrib>Grace, Said R. ; Zafer, Agacik</creatorcontrib><description>This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form C D a α y = e ( t ) + f ( t , x ),   t ≥ a where 0 &lt; α &lt; 1, a ≥ 0,  C D a α y denotes the Caputo fractional derivative of order α of y . The following particular cases are considered: y = ( r ( t )| x′ | δ -1 x′ ) ′ ,  ( δ ≥ 1),    y = x′ ,   y = x . We offer a method that can be applied to investigate more general class of fractional differential equations as well.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjst/e2018-00043-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic methods ; Asymptotic properties ; Atomic ; Classical and Continuum Physics ; Condensed Matter Physics ; Differential equations ; Fractional Dynamical Systems - Recent Trends in Theory and Applications ; Materials Science ; Mathematical analysis ; Measurement Science and Instrumentation ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article</subject><ispartof>The European physical journal. ST, Special topics, 2017-12, Vol.226 (16-18), p.3657-3665</ispartof><rights>EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</citedby><cites>FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjst/e2018-00043-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjst/e2018-00043-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grace, Said R.</creatorcontrib><creatorcontrib>Zafer, Agacik</creatorcontrib><title>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form C D a α y = e ( t ) + f ( t , x ),   t ≥ a where 0 &lt; α &lt; 1, a ≥ 0,  C D a α y denotes the Caputo fractional derivative of order α of y . The following particular cases are considered: y = ( r ( t )| x′ | δ -1 x′ ) ′ ,  ( δ ≥ 1),    y = x′ ,   y = x . We offer a method that can be applied to investigate more general class of fractional differential equations as well.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Fractional Dynamical Systems - Recent Trends in Theory and Applications</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wE3A9djcZDLTLKX4AqEbXYdMemNTppM2yQj9906nijtX9_Wdw-UQcgvsHqBkM9xtUp4hZzAvGGOlKOCMTEBJKKqSwflvL6S8JFcpbRiTFVdiQuyyo3mN1KTDdpdD9pY2uDZfPkQaHO1CF5L1bWtyiAeaQttnH7p0vFmM2fiOumjscWlauvLOYcQu-2HAfW9G-JpcONMmvPmpU_Lx9Pi-eCnels-vi4e3wgrOc2EU8GpVOqvQGAaydhKsmFes4aYWTomqUQJASFZxtFI6wWpoUKFDKxyUYkruTr67GPY9pqw3oY_DX0lzVgsmZD1XAyVOlI0hpYhO76LfmnjQwPQxTT2mqcc09ZimhkFVnlRpoLtPjH_e_8m-AQs_fOc</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Grace, Said R.</creator><creator>Zafer, Agacik</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171201</creationdate><title>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</title><author>Grace, Said R. ; Zafer, Agacik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a9126d4fc9eaa0157f51c3860b2a73f936b931135062ec55f3071be9efec3f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Fractional Dynamical Systems - Recent Trends in Theory and Applications</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grace, Said R.</creatorcontrib><creatorcontrib>Zafer, Agacik</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grace, Said R.</au><au>Zafer, Agacik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>226</volume><issue>16-18</issue><spage>3657</spage><epage>3665</epage><pages>3657-3665</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>This paper deals with the asymptotic behavior of nonoscillatory solutions of fractional differential equations of the form C D a α y = e ( t ) + f ( t , x ),   t ≥ a where 0 &lt; α &lt; 1, a ≥ 0,  C D a α y denotes the Caputo fractional derivative of order α of y . The following particular cases are considered: y = ( r ( t )| x′ | δ -1 x′ ) ′ ,  ( δ ≥ 1),    y = x′ ,   y = x . We offer a method that can be applied to investigate more general class of fractional differential equations as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjst/e2018-00043-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2017-12, Vol.226 (16-18), p.3657-3665
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2073035789
source Springer Nature - Complete Springer Journals
subjects Asymptotic methods
Asymptotic properties
Atomic
Classical and Continuum Physics
Condensed Matter Physics
Differential equations
Fractional Dynamical Systems - Recent Trends in Theory and Applications
Materials Science
Mathematical analysis
Measurement Science and Instrumentation
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
title On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20asymptotic%20behavior%20of%20nonoscillatory%20solutions%20of%20certain%20fractional%20differential%20equations&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Grace,%20Said%20R.&rft.date=2017-12-01&rft.volume=226&rft.issue=16-18&rft.spage=3657&rft.epage=3665&rft.pages=3657-3665&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjst/e2018-00043-1&rft_dat=%3Cproquest_cross%3E2073035789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073035789&rft_id=info:pmid/&rfr_iscdi=true