A multi-criteria context-sensitive approach for social image collection summarization

Recent increase in the number of digital photos in the content sharing and social networking websites has created an endless demand for techniques to analyze, navigate, and summarize these images. In this paper, we focus on image collection summarization. Earlier methods in image collection summariz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sadhana (Bangalore) 2018-09, Vol.43 (9), p.1-12, Article 143
Hauptverfasser: Samani, Zahra Riahi, Moghaddam, Mohsen Ebrahimi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 9
container_start_page 1
container_title Sadhana (Bangalore)
container_volume 43
creator Samani, Zahra Riahi
Moghaddam, Mohsen Ebrahimi
description Recent increase in the number of digital photos in the content sharing and social networking websites has created an endless demand for techniques to analyze, navigate, and summarize these images. In this paper, we focus on image collection summarization. Earlier methods in image collection summarization consider representativeness and diversity criteria while recent ones also consider other criteria such as image quality, aesthetic or appeal. In this paper, we propose a multi-criteria context-sensitive approach for social image collection summarization. In the proposed method, two different sets of features are combined while each one looks at different criteria for image collection summarization: social attractiveness features and semantic features. The first feature set considers different aspects that make an image appealing such as image quality, aesthetic, and emotion to create attractiveness score for input images while the second one covers semantic content of images and assigns semantic score to them. We use social network infrastructure to identify attractiveness features and domain ontology for extracting ontology features. The final summarization is provided by integrating the attractiveness and semantic features of input images. The experimental results on a collection of human generated summaries on a set of Flickr images demonstrate the effectiveness of the proposed image collection summarization approach.
doi_str_mv 10.1007/s12046-018-0908-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2072763146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072763146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1c68230d1e4a236458740af578a639d4898d9b2834bdd2f18241b2e0e7ae91363</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2A6-jNY_JYluILCm7sOqSZTE2ZR00yov56ZxjBlat7L3zn3MNB6JrALQGQd4lQ4AIDURg0KKxP0AK0ZFgKKU_HnZYCU671ObpI6QBAJSi2QNtV0Q5NDtjFkH0MtnB9l_1nxsl3KeTw4Qt7PMbeurei7mORehdsU4TW7v3INo13OfRdkYa2tTF82-m6RGe1bZK_-p1LtH24f10_4c3L4_N6tcGOlTpj4oSiDCriuaVM8FJJDrYupbKC6YorrSq9o4rxXVXRmijKyY568NJ6TZhgS3Qz-44B3wefsjn0Q-zGl4aCpFIwwieKzJSLfUrR1-YYx_zxyxAwU3tmbs-M7ZmpPaNHDZ01aWS7vY9_zv-LfgAH-3Jg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072763146</pqid></control><display><type>article</type><title>A multi-criteria context-sensitive approach for social image collection summarization</title><source>Indian Academy of Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Samani, Zahra Riahi ; Moghaddam, Mohsen Ebrahimi</creator><creatorcontrib>Samani, Zahra Riahi ; Moghaddam, Mohsen Ebrahimi</creatorcontrib><description>Recent increase in the number of digital photos in the content sharing and social networking websites has created an endless demand for techniques to analyze, navigate, and summarize these images. In this paper, we focus on image collection summarization. Earlier methods in image collection summarization consider representativeness and diversity criteria while recent ones also consider other criteria such as image quality, aesthetic or appeal. In this paper, we propose a multi-criteria context-sensitive approach for social image collection summarization. In the proposed method, two different sets of features are combined while each one looks at different criteria for image collection summarization: social attractiveness features and semantic features. The first feature set considers different aspects that make an image appealing such as image quality, aesthetic, and emotion to create attractiveness score for input images while the second one covers semantic content of images and assigns semantic score to them. We use social network infrastructure to identify attractiveness features and domain ontology for extracting ontology features. The final summarization is provided by integrating the attractiveness and semantic features of input images. The experimental results on a collection of human generated summaries on a set of Flickr images demonstrate the effectiveness of the proposed image collection summarization approach.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-018-0908-9</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Collection ; Criteria ; Demand analysis ; Digital imaging ; Engineering ; Feature extraction ; Image quality ; Ontology ; Semantics ; Social networks ; Websites</subject><ispartof>Sadhana (Bangalore), 2018-09, Vol.43 (9), p.1-12, Article 143</ispartof><rights>Indian Academy of Sciences 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-1c68230d1e4a236458740af578a639d4898d9b2834bdd2f18241b2e0e7ae91363</citedby><cites>FETCH-LOGICAL-c359t-1c68230d1e4a236458740af578a639d4898d9b2834bdd2f18241b2e0e7ae91363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12046-018-0908-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12046-018-0908-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Samani, Zahra Riahi</creatorcontrib><creatorcontrib>Moghaddam, Mohsen Ebrahimi</creatorcontrib><title>A multi-criteria context-sensitive approach for social image collection summarization</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>Recent increase in the number of digital photos in the content sharing and social networking websites has created an endless demand for techniques to analyze, navigate, and summarize these images. In this paper, we focus on image collection summarization. Earlier methods in image collection summarization consider representativeness and diversity criteria while recent ones also consider other criteria such as image quality, aesthetic or appeal. In this paper, we propose a multi-criteria context-sensitive approach for social image collection summarization. In the proposed method, two different sets of features are combined while each one looks at different criteria for image collection summarization: social attractiveness features and semantic features. The first feature set considers different aspects that make an image appealing such as image quality, aesthetic, and emotion to create attractiveness score for input images while the second one covers semantic content of images and assigns semantic score to them. We use social network infrastructure to identify attractiveness features and domain ontology for extracting ontology features. The final summarization is provided by integrating the attractiveness and semantic features of input images. The experimental results on a collection of human generated summaries on a set of Flickr images demonstrate the effectiveness of the proposed image collection summarization approach.</description><subject>Collection</subject><subject>Criteria</subject><subject>Demand analysis</subject><subject>Digital imaging</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Image quality</subject><subject>Ontology</subject><subject>Semantics</subject><subject>Social networks</subject><subject>Websites</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2A6-jNY_JYluILCm7sOqSZTE2ZR00yov56ZxjBlat7L3zn3MNB6JrALQGQd4lQ4AIDURg0KKxP0AK0ZFgKKU_HnZYCU671ObpI6QBAJSi2QNtV0Q5NDtjFkH0MtnB9l_1nxsl3KeTw4Qt7PMbeurei7mORehdsU4TW7v3INo13OfRdkYa2tTF82-m6RGe1bZK_-p1LtH24f10_4c3L4_N6tcGOlTpj4oSiDCriuaVM8FJJDrYupbKC6YorrSq9o4rxXVXRmijKyY568NJ6TZhgS3Qz-44B3wefsjn0Q-zGl4aCpFIwwieKzJSLfUrR1-YYx_zxyxAwU3tmbs-M7ZmpPaNHDZ01aWS7vY9_zv-LfgAH-3Jg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Samani, Zahra Riahi</creator><creator>Moghaddam, Mohsen Ebrahimi</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>A multi-criteria context-sensitive approach for social image collection summarization</title><author>Samani, Zahra Riahi ; Moghaddam, Mohsen Ebrahimi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1c68230d1e4a236458740af578a639d4898d9b2834bdd2f18241b2e0e7ae91363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Collection</topic><topic>Criteria</topic><topic>Demand analysis</topic><topic>Digital imaging</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Image quality</topic><topic>Ontology</topic><topic>Semantics</topic><topic>Social networks</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samani, Zahra Riahi</creatorcontrib><creatorcontrib>Moghaddam, Mohsen Ebrahimi</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samani, Zahra Riahi</au><au>Moghaddam, Mohsen Ebrahimi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-criteria context-sensitive approach for social image collection summarization</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>43</volume><issue>9</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>143</artnum><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>Recent increase in the number of digital photos in the content sharing and social networking websites has created an endless demand for techniques to analyze, navigate, and summarize these images. In this paper, we focus on image collection summarization. Earlier methods in image collection summarization consider representativeness and diversity criteria while recent ones also consider other criteria such as image quality, aesthetic or appeal. In this paper, we propose a multi-criteria context-sensitive approach for social image collection summarization. In the proposed method, two different sets of features are combined while each one looks at different criteria for image collection summarization: social attractiveness features and semantic features. The first feature set considers different aspects that make an image appealing such as image quality, aesthetic, and emotion to create attractiveness score for input images while the second one covers semantic content of images and assigns semantic score to them. We use social network infrastructure to identify attractiveness features and domain ontology for extracting ontology features. The final summarization is provided by integrating the attractiveness and semantic features of input images. The experimental results on a collection of human generated summaries on a set of Flickr images demonstrate the effectiveness of the proposed image collection summarization approach.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-018-0908-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0256-2499
ispartof Sadhana (Bangalore), 2018-09, Vol.43 (9), p.1-12, Article 143
issn 0256-2499
0973-7677
language eng
recordid cdi_proquest_journals_2072763146
source Indian Academy of Sciences; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Collection
Criteria
Demand analysis
Digital imaging
Engineering
Feature extraction
Image quality
Ontology
Semantics
Social networks
Websites
title A multi-criteria context-sensitive approach for social image collection summarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-criteria%20context-sensitive%20approach%20for%20social%20image%20collection%20summarization&rft.jtitle=Sadhana%20(Bangalore)&rft.au=Samani,%20Zahra%20Riahi&rft.date=2018-09-01&rft.volume=43&rft.issue=9&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=143&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-018-0908-9&rft_dat=%3Cproquest_cross%3E2072763146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072763146&rft_id=info:pmid/&rfr_iscdi=true