Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis

Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2018-06, Vol.424, p.192-207
Hauptverfasser: Chen, Dongyue, Lin, Jianhui, Li, Yanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue
container_start_page 192
container_title Journal of sound and vibration
container_volume 424
creator Chen, Dongyue
Lin, Jianhui
Li, Yanping
description Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.
doi_str_mv 10.1016/j.jsv.2018.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2072289778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18301974</els_id><sourcerecordid>2072289778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</originalsourceid><addsrcrecordid>eNp9kM2O1DAQhC0EEsPCA3CzxDmhHTuJI05oxZ-0q72AxM3y2J3ZjhI72MkInoTXxcNw5lRS91fVrWLstYBagOjeTvWUz3UDQtcg6yJP2EHA0Fa67fRTdgBomkp18P05e5HzBACDkurAft9HTyOh5y4u64wLhs2mXxxDxuU4I8dlpUTOznyJHrnHCxczbRQDt8FzCluikMldgXEP7rLLHM923u1fjoLHn3yMiT_S6bHKK5aDW7IU-AltOsaytPu8cU_2FEp6fsmejXbO-Oqf3rBvHz98vf1c3T18-nL7_q5ysmm3SoL30HdC9A6gQzuqARVI3bbCdXpwXoxqBCmkGpUDWwZSyaYTR-1b3Ssvb9iba-6a4o8d82amuKdQTpoG-qbRQ9_rQokr5VLMOeFo1kRL6ckIMJf-zWRK_-bSvwFpihTPu6sHy_tnwmSyIwwOPSV0m_GR_uP-AywskYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072289778</pqid></control><display><type>article</type><title>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Dongyue ; Lin, Jianhui ; Li, Yanping</creator><creatorcontrib>Chen, Dongyue ; Lin, Jianhui ; Li, Yanping</creatorcontrib><description>Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.03.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Complementary ensemble empirical mode decomposition ; Computation cost ; Computer simulation ; Cost analysis ; Decomposition ; Empirical analysis ; Fault diagnosis ; Gearboxes ; High speed ; High speed rail ; High-speed train gearbox ; Intrinsic mode function ; Noise reduction ; Signal reconstruction ; Trains</subject><ispartof>Journal of sound and vibration, 2018-06, Vol.424, p.192-207</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 23, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</citedby><cites>FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Chen, Dongyue</creatorcontrib><creatorcontrib>Lin, Jianhui</creatorcontrib><creatorcontrib>Li, Yanping</creatorcontrib><title>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</title><title>Journal of sound and vibration</title><description>Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.</description><subject>Complementary ensemble empirical mode decomposition</subject><subject>Computation cost</subject><subject>Computer simulation</subject><subject>Cost analysis</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Fault diagnosis</subject><subject>Gearboxes</subject><subject>High speed</subject><subject>High speed rail</subject><subject>High-speed train gearbox</subject><subject>Intrinsic mode function</subject><subject>Noise reduction</subject><subject>Signal reconstruction</subject><subject>Trains</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM2O1DAQhC0EEsPCA3CzxDmhHTuJI05oxZ-0q72AxM3y2J3ZjhI72MkInoTXxcNw5lRS91fVrWLstYBagOjeTvWUz3UDQtcg6yJP2EHA0Fa67fRTdgBomkp18P05e5HzBACDkurAft9HTyOh5y4u64wLhs2mXxxDxuU4I8dlpUTOznyJHrnHCxczbRQDt8FzCluikMldgXEP7rLLHM923u1fjoLHn3yMiT_S6bHKK5aDW7IU-AltOsaytPu8cU_2FEp6fsmejXbO-Oqf3rBvHz98vf1c3T18-nL7_q5ysmm3SoL30HdC9A6gQzuqARVI3bbCdXpwXoxqBCmkGpUDWwZSyaYTR-1b3Ssvb9iba-6a4o8d82amuKdQTpoG-qbRQ9_rQokr5VLMOeFo1kRL6ckIMJf-zWRK_-bSvwFpihTPu6sHy_tnwmSyIwwOPSV0m_GR_uP-AywskYw</recordid><startdate>20180623</startdate><enddate>20180623</enddate><creator>Chen, Dongyue</creator><creator>Lin, Jianhui</creator><creator>Li, Yanping</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20180623</creationdate><title>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</title><author>Chen, Dongyue ; Lin, Jianhui ; Li, Yanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complementary ensemble empirical mode decomposition</topic><topic>Computation cost</topic><topic>Computer simulation</topic><topic>Cost analysis</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Fault diagnosis</topic><topic>Gearboxes</topic><topic>High speed</topic><topic>High speed rail</topic><topic>High-speed train gearbox</topic><topic>Intrinsic mode function</topic><topic>Noise reduction</topic><topic>Signal reconstruction</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dongyue</creatorcontrib><creatorcontrib>Lin, Jianhui</creatorcontrib><creatorcontrib>Li, Yanping</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dongyue</au><au>Lin, Jianhui</au><au>Li, Yanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-06-23</date><risdate>2018</risdate><volume>424</volume><spage>192</spage><epage>207</epage><pages>192-207</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.03.018</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2018-06, Vol.424, p.192-207
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2072289778
source Elsevier ScienceDirect Journals
subjects Complementary ensemble empirical mode decomposition
Computation cost
Computer simulation
Cost analysis
Decomposition
Empirical analysis
Fault diagnosis
Gearboxes
High speed
High speed rail
High-speed train gearbox
Intrinsic mode function
Noise reduction
Signal reconstruction
Trains
title Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20complementary%20ensemble%20empirical%20mode%20decomposition%20and%20intrinsic%20mode%20functions%20evaluation%20index%20for%20high-speed%20train%20gearbox%20fault%20diagnosis&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Chen,%20Dongyue&rft.date=2018-06-23&rft.volume=424&rft.spage=192&rft.epage=207&rft.pages=192-207&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.03.018&rft_dat=%3Cproquest_cross%3E2072289778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072289778&rft_id=info:pmid/&rft_els_id=S0022460X18301974&rfr_iscdi=true