Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis
Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and E...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2018-06, Vol.424, p.192-207 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | |
container_start_page | 192 |
container_title | Journal of sound and vibration |
container_volume | 424 |
creator | Chen, Dongyue Lin, Jianhui Li, Yanping |
description | Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically. |
doi_str_mv | 10.1016/j.jsv.2018.03.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2072289778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18301974</els_id><sourcerecordid>2072289778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</originalsourceid><addsrcrecordid>eNp9kM2O1DAQhC0EEsPCA3CzxDmhHTuJI05oxZ-0q72AxM3y2J3ZjhI72MkInoTXxcNw5lRS91fVrWLstYBagOjeTvWUz3UDQtcg6yJP2EHA0Fa67fRTdgBomkp18P05e5HzBACDkurAft9HTyOh5y4u64wLhs2mXxxDxuU4I8dlpUTOznyJHrnHCxczbRQDt8FzCluikMldgXEP7rLLHM923u1fjoLHn3yMiT_S6bHKK5aDW7IU-AltOsaytPu8cU_2FEp6fsmejXbO-Oqf3rBvHz98vf1c3T18-nL7_q5ysmm3SoL30HdC9A6gQzuqARVI3bbCdXpwXoxqBCmkGpUDWwZSyaYTR-1b3Ssvb9iba-6a4o8d82amuKdQTpoG-qbRQ9_rQokr5VLMOeFo1kRL6ckIMJf-zWRK_-bSvwFpihTPu6sHy_tnwmSyIwwOPSV0m_GR_uP-AywskYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072289778</pqid></control><display><type>article</type><title>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</title><source>Elsevier ScienceDirect Journals</source><creator>Chen, Dongyue ; Lin, Jianhui ; Li, Yanping</creator><creatorcontrib>Chen, Dongyue ; Lin, Jianhui ; Li, Yanping</creatorcontrib><description>Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.03.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Complementary ensemble empirical mode decomposition ; Computation cost ; Computer simulation ; Cost analysis ; Decomposition ; Empirical analysis ; Fault diagnosis ; Gearboxes ; High speed ; High speed rail ; High-speed train gearbox ; Intrinsic mode function ; Noise reduction ; Signal reconstruction ; Trains</subject><ispartof>Journal of sound and vibration, 2018-06, Vol.424, p.192-207</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jun 23, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</citedby><cites>FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Chen, Dongyue</creatorcontrib><creatorcontrib>Lin, Jianhui</creatorcontrib><creatorcontrib>Li, Yanping</creatorcontrib><title>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</title><title>Journal of sound and vibration</title><description>Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.</description><subject>Complementary ensemble empirical mode decomposition</subject><subject>Computation cost</subject><subject>Computer simulation</subject><subject>Cost analysis</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Fault diagnosis</subject><subject>Gearboxes</subject><subject>High speed</subject><subject>High speed rail</subject><subject>High-speed train gearbox</subject><subject>Intrinsic mode function</subject><subject>Noise reduction</subject><subject>Signal reconstruction</subject><subject>Trains</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM2O1DAQhC0EEsPCA3CzxDmhHTuJI05oxZ-0q72AxM3y2J3ZjhI72MkInoTXxcNw5lRS91fVrWLstYBagOjeTvWUz3UDQtcg6yJP2EHA0Fa67fRTdgBomkp18P05e5HzBACDkurAft9HTyOh5y4u64wLhs2mXxxDxuU4I8dlpUTOznyJHrnHCxczbRQDt8FzCluikMldgXEP7rLLHM923u1fjoLHn3yMiT_S6bHKK5aDW7IU-AltOsaytPu8cU_2FEp6fsmejXbO-Oqf3rBvHz98vf1c3T18-nL7_q5ysmm3SoL30HdC9A6gQzuqARVI3bbCdXpwXoxqBCmkGpUDWwZSyaYTR-1b3Ssvb9iba-6a4o8d82amuKdQTpoG-qbRQ9_rQokr5VLMOeFo1kRL6ckIMJf-zWRK_-bSvwFpihTPu6sHy_tnwmSyIwwOPSV0m_GR_uP-AywskYw</recordid><startdate>20180623</startdate><enddate>20180623</enddate><creator>Chen, Dongyue</creator><creator>Lin, Jianhui</creator><creator>Li, Yanping</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20180623</creationdate><title>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</title><author>Chen, Dongyue ; Lin, Jianhui ; Li, Yanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-30dd076117c006eaf49e4038551c689cd1f4f03134f4c0a9cd343261b8d5874d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complementary ensemble empirical mode decomposition</topic><topic>Computation cost</topic><topic>Computer simulation</topic><topic>Cost analysis</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Fault diagnosis</topic><topic>Gearboxes</topic><topic>High speed</topic><topic>High speed rail</topic><topic>High-speed train gearbox</topic><topic>Intrinsic mode function</topic><topic>Noise reduction</topic><topic>Signal reconstruction</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Dongyue</creatorcontrib><creatorcontrib>Lin, Jianhui</creatorcontrib><creatorcontrib>Li, Yanping</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Dongyue</au><au>Lin, Jianhui</au><au>Li, Yanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-06-23</date><risdate>2018</risdate><volume>424</volume><spage>192</spage><epage>207</epage><pages>192-207</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Complementary ensemble empirical mode decomposition (CEEMD) has been developed for the mode-mixing problem in Empirical Mode Decomposition (EMD) method. Compared to the ensemble empirical mode decomposition (EEMD), the CEEMD method reduces residue noise in the signal reconstruction. Both CEEMD and EEMD need enough ensemble number to reduce the residue noise, and hence it would be too much computation cost. Moreover, the selection of intrinsic mode functions (IMFs) for further analysis usually depends on experience. A modified CEEMD method and IMFs evaluation index are proposed with the aim of reducing the computational cost and select IMFs automatically. A simulated signal and in-service high-speed train gearbox vibration signals are employed to validate the proposed method in this paper. The results demonstrate that the modified CEEMD can decompose the signal efficiently with less computation cost, and the IMFs evaluation index can select the meaningful IMFs automatically.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.03.018</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2018-06, Vol.424, p.192-207 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2072289778 |
source | Elsevier ScienceDirect Journals |
subjects | Complementary ensemble empirical mode decomposition Computation cost Computer simulation Cost analysis Decomposition Empirical analysis Fault diagnosis Gearboxes High speed High speed rail High-speed train gearbox Intrinsic mode function Noise reduction Signal reconstruction Trains |
title | Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20complementary%20ensemble%20empirical%20mode%20decomposition%20and%20intrinsic%20mode%20functions%20evaluation%20index%20for%20high-speed%20train%20gearbox%20fault%20diagnosis&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Chen,%20Dongyue&rft.date=2018-06-23&rft.volume=424&rft.spage=192&rft.epage=207&rft.pages=192-207&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.03.018&rft_dat=%3Cproquest_cross%3E2072289778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072289778&rft_id=info:pmid/&rft_els_id=S0022460X18301974&rfr_iscdi=true |