Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model

•EGS reservoir comprising discrete fracture networks and matrix rock is modeled.•A THM coupling model is proposed for simulating the heat extraction in EGS.•The numerical model is validated by comparing with several analytical solutions.•An evaluation system and a case study is presented for evaluat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermics 2018-07, Vol.74, p.19-34
Hauptverfasser: Yao, Jun, Zhang, Xu, Sun, Zhixue, Huang, Zhaoqin, Liu, Junrong, Li, Yang, Xin, Ying, Yan, Xia, Liu, Wenzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 19
container_title Geothermics
container_volume 74
creator Yao, Jun
Zhang, Xu
Sun, Zhixue
Huang, Zhaoqin
Liu, Junrong
Li, Yang
Xin, Ying
Yan, Xia
Liu, Wenzheng
description •EGS reservoir comprising discrete fracture networks and matrix rock is modeled.•A THM coupling model is proposed for simulating the heat extraction in EGS.•The numerical model is validated by comparing with several analytical solutions.•An evaluation system and a case study is presented for evaluating the performance of EGS.•Energy efficiency and heat recovery remain at low level through a doublet system. The geothermal heat production from Enhanced Geothermal System (EGS) is influenced by complex thermal-hydraulic-mechanical (THM) coupling process, it is necessary to consider THM coupling effects on utilization efficiency and production performance of EGS. The geothermal reservoir regarded as a fractured porous media consists of rock matrix blocks and discrete fractures. Based on local thermal non-equilibrium theory, a mathematical model and an ideal 3D-EGS numerical model incorporating THM coupling process are established to simulate the heat production process in EGS, and the distribution regularities of pressure, temperature, stress and deformation in geothermal reservoir are analyzed. The results show that the connecting fractures are the main flow paths and the transmission characteristic of reservoir is altered due to displacement of fractures caused by the change of pressure and temperature in reservoir. The main parameters controlling the outlet temperature are also studied by sensitivity analysis. An EGS case from Desert Peak geothermal reservoir is simulated with a 3D stochastically generated fracture model to evaluate EGS heat production performance. The results indicate that heat production time, thermal output and power generation can meet the commercial standard with appropriate reservoir and operation parameters, however, energy efficiency and overall heat recovery remain at low level.
doi_str_mv 10.1016/j.geothermics.2017.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2072281435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650517303188</els_id><sourcerecordid>2072281435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b89b48de603055eab26d7eeb4c60288e552dc36361e079e9772d4a779d6d913d3</originalsourceid><addsrcrecordid>eNqNkMFu1DAQhi0EEkvpOxhxThjbsZ0c0VIKUkUPLWfLsWcbr5J4sR1oH4G3bnaXA8eeRhrN__2aj5APDGoGTH3a1w8Yy4BpCi7XHJiuGa8B5CuyYa3uKiG1ek02ILSslAT5lrzLeQ8AWmrYkL8_lglTcHakOUzLaEuIM407ujLpgLZQfCzJutM6zFR8qa6u7-ifUAZ6qrVjNTz5ZJcxuGpCN9j5RHNxOYxhfqATliF62tuMnq4QH7JLWJDujtglYaZT9Di-J292dsx4-W9ekJ9fr-6336qb2-vv2883lRNNV6q-7fqm9ahAgJRoe668Ruwbp4C3LUrJvRNKKIagO-y05r6xWnde-Y4JLy7IxzP3kOKvBXMx-7ikea00HDTnLWuEXK-685VLMeeEO3NIYbLpyTAwR_Nmb_4zb47mDeNmNb9mt-csrm_8DphMdgFnhz4kdMX4GF5AeQanb5T4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072281435</pqid></control><display><type>article</type><title>Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model</title><source>Elsevier ScienceDirect Journals</source><creator>Yao, Jun ; Zhang, Xu ; Sun, Zhixue ; Huang, Zhaoqin ; Liu, Junrong ; Li, Yang ; Xin, Ying ; Yan, Xia ; Liu, Wenzheng</creator><creatorcontrib>Yao, Jun ; Zhang, Xu ; Sun, Zhixue ; Huang, Zhaoqin ; Liu, Junrong ; Li, Yang ; Xin, Ying ; Yan, Xia ; Liu, Wenzheng</creatorcontrib><description>•EGS reservoir comprising discrete fracture networks and matrix rock is modeled.•A THM coupling model is proposed for simulating the heat extraction in EGS.•The numerical model is validated by comparing with several analytical solutions.•An evaluation system and a case study is presented for evaluating the performance of EGS.•Energy efficiency and heat recovery remain at low level through a doublet system. The geothermal heat production from Enhanced Geothermal System (EGS) is influenced by complex thermal-hydraulic-mechanical (THM) coupling process, it is necessary to consider THM coupling effects on utilization efficiency and production performance of EGS. The geothermal reservoir regarded as a fractured porous media consists of rock matrix blocks and discrete fractures. Based on local thermal non-equilibrium theory, a mathematical model and an ideal 3D-EGS numerical model incorporating THM coupling process are established to simulate the heat production process in EGS, and the distribution regularities of pressure, temperature, stress and deformation in geothermal reservoir are analyzed. The results show that the connecting fractures are the main flow paths and the transmission characteristic of reservoir is altered due to displacement of fractures caused by the change of pressure and temperature in reservoir. The main parameters controlling the outlet temperature are also studied by sensitivity analysis. An EGS case from Desert Peak geothermal reservoir is simulated with a 3D stochastically generated fracture model to evaluate EGS heat production performance. The results indicate that heat production time, thermal output and power generation can meet the commercial standard with appropriate reservoir and operation parameters, however, energy efficiency and overall heat recovery remain at low level.</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2017.12.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Coupling ; Deformation ; Deformation mechanisms ; Deserts ; Discrete fractures ; Electric power generation ; Energy efficiency ; Enhanced geothermal system ; Enhanced geothermal systems ; Flow paths ; Fractures ; Geothermal power ; Heat ; Heat recovery ; Heat treatment ; Hydraulics ; Low level ; Mathematical models ; Matrix methods ; Mechanical properties ; Numerical simulation ; Parameter sensitivity ; Performance evaluation ; Porous media ; Pressure ; Reservoirs ; Sensitivity analysis ; Simulation ; Stress concentration ; Temperature effects ; THM coupling ; Three dimensional models</subject><ispartof>Geothermics, 2018-07, Vol.74, p.19-34</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b89b48de603055eab26d7eeb4c60288e552dc36361e079e9772d4a779d6d913d3</citedby><cites>FETCH-LOGICAL-c349t-b89b48de603055eab26d7eeb4c60288e552dc36361e079e9772d4a779d6d913d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geothermics.2017.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Sun, Zhixue</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Liu, Junrong</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xin, Ying</creatorcontrib><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Liu, Wenzheng</creatorcontrib><title>Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model</title><title>Geothermics</title><description>•EGS reservoir comprising discrete fracture networks and matrix rock is modeled.•A THM coupling model is proposed for simulating the heat extraction in EGS.•The numerical model is validated by comparing with several analytical solutions.•An evaluation system and a case study is presented for evaluating the performance of EGS.•Energy efficiency and heat recovery remain at low level through a doublet system. The geothermal heat production from Enhanced Geothermal System (EGS) is influenced by complex thermal-hydraulic-mechanical (THM) coupling process, it is necessary to consider THM coupling effects on utilization efficiency and production performance of EGS. The geothermal reservoir regarded as a fractured porous media consists of rock matrix blocks and discrete fractures. Based on local thermal non-equilibrium theory, a mathematical model and an ideal 3D-EGS numerical model incorporating THM coupling process are established to simulate the heat production process in EGS, and the distribution regularities of pressure, temperature, stress and deformation in geothermal reservoir are analyzed. The results show that the connecting fractures are the main flow paths and the transmission characteristic of reservoir is altered due to displacement of fractures caused by the change of pressure and temperature in reservoir. The main parameters controlling the outlet temperature are also studied by sensitivity analysis. An EGS case from Desert Peak geothermal reservoir is simulated with a 3D stochastically generated fracture model to evaluate EGS heat production performance. The results indicate that heat production time, thermal output and power generation can meet the commercial standard with appropriate reservoir and operation parameters, however, energy efficiency and overall heat recovery remain at low level.</description><subject>Computer simulation</subject><subject>Coupling</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Deserts</subject><subject>Discrete fractures</subject><subject>Electric power generation</subject><subject>Energy efficiency</subject><subject>Enhanced geothermal system</subject><subject>Enhanced geothermal systems</subject><subject>Flow paths</subject><subject>Fractures</subject><subject>Geothermal power</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Heat treatment</subject><subject>Hydraulics</subject><subject>Low level</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Mechanical properties</subject><subject>Numerical simulation</subject><subject>Parameter sensitivity</subject><subject>Performance evaluation</subject><subject>Porous media</subject><subject>Pressure</subject><subject>Reservoirs</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Stress concentration</subject><subject>Temperature effects</subject><subject>THM coupling</subject><subject>Three dimensional models</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkMFu1DAQhi0EEkvpOxhxThjbsZ0c0VIKUkUPLWfLsWcbr5J4sR1oH4G3bnaXA8eeRhrN__2aj5APDGoGTH3a1w8Yy4BpCi7XHJiuGa8B5CuyYa3uKiG1ek02ILSslAT5lrzLeQ8AWmrYkL8_lglTcHakOUzLaEuIM407ujLpgLZQfCzJutM6zFR8qa6u7-ifUAZ6qrVjNTz5ZJcxuGpCN9j5RHNxOYxhfqATliF62tuMnq4QH7JLWJDujtglYaZT9Di-J292dsx4-W9ekJ9fr-6336qb2-vv2883lRNNV6q-7fqm9ahAgJRoe668Ruwbp4C3LUrJvRNKKIagO-y05r6xWnde-Y4JLy7IxzP3kOKvBXMx-7ikea00HDTnLWuEXK-685VLMeeEO3NIYbLpyTAwR_Nmb_4zb47mDeNmNb9mt-csrm_8DphMdgFnhz4kdMX4GF5AeQanb5T4</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Yao, Jun</creator><creator>Zhang, Xu</creator><creator>Sun, Zhixue</creator><creator>Huang, Zhaoqin</creator><creator>Liu, Junrong</creator><creator>Li, Yang</creator><creator>Xin, Ying</creator><creator>Yan, Xia</creator><creator>Liu, Wenzheng</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>201807</creationdate><title>Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model</title><author>Yao, Jun ; Zhang, Xu ; Sun, Zhixue ; Huang, Zhaoqin ; Liu, Junrong ; Li, Yang ; Xin, Ying ; Yan, Xia ; Liu, Wenzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b89b48de603055eab26d7eeb4c60288e552dc36361e079e9772d4a779d6d913d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Coupling</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Deserts</topic><topic>Discrete fractures</topic><topic>Electric power generation</topic><topic>Energy efficiency</topic><topic>Enhanced geothermal system</topic><topic>Enhanced geothermal systems</topic><topic>Flow paths</topic><topic>Fractures</topic><topic>Geothermal power</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Heat treatment</topic><topic>Hydraulics</topic><topic>Low level</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Mechanical properties</topic><topic>Numerical simulation</topic><topic>Parameter sensitivity</topic><topic>Performance evaluation</topic><topic>Porous media</topic><topic>Pressure</topic><topic>Reservoirs</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Stress concentration</topic><topic>Temperature effects</topic><topic>THM coupling</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jun</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Sun, Zhixue</creatorcontrib><creatorcontrib>Huang, Zhaoqin</creatorcontrib><creatorcontrib>Liu, Junrong</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xin, Ying</creatorcontrib><creatorcontrib>Yan, Xia</creatorcontrib><creatorcontrib>Liu, Wenzheng</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Jun</au><au>Zhang, Xu</au><au>Sun, Zhixue</au><au>Huang, Zhaoqin</au><au>Liu, Junrong</au><au>Li, Yang</au><au>Xin, Ying</au><au>Yan, Xia</au><au>Liu, Wenzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model</atitle><jtitle>Geothermics</jtitle><date>2018-07</date><risdate>2018</risdate><volume>74</volume><spage>19</spage><epage>34</epage><pages>19-34</pages><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>•EGS reservoir comprising discrete fracture networks and matrix rock is modeled.•A THM coupling model is proposed for simulating the heat extraction in EGS.•The numerical model is validated by comparing with several analytical solutions.•An evaluation system and a case study is presented for evaluating the performance of EGS.•Energy efficiency and heat recovery remain at low level through a doublet system. The geothermal heat production from Enhanced Geothermal System (EGS) is influenced by complex thermal-hydraulic-mechanical (THM) coupling process, it is necessary to consider THM coupling effects on utilization efficiency and production performance of EGS. The geothermal reservoir regarded as a fractured porous media consists of rock matrix blocks and discrete fractures. Based on local thermal non-equilibrium theory, a mathematical model and an ideal 3D-EGS numerical model incorporating THM coupling process are established to simulate the heat production process in EGS, and the distribution regularities of pressure, temperature, stress and deformation in geothermal reservoir are analyzed. The results show that the connecting fractures are the main flow paths and the transmission characteristic of reservoir is altered due to displacement of fractures caused by the change of pressure and temperature in reservoir. The main parameters controlling the outlet temperature are also studied by sensitivity analysis. An EGS case from Desert Peak geothermal reservoir is simulated with a 3D stochastically generated fracture model to evaluate EGS heat production performance. The results indicate that heat production time, thermal output and power generation can meet the commercial standard with appropriate reservoir and operation parameters, however, energy efficiency and overall heat recovery remain at low level.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2017.12.005</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0375-6505
ispartof Geothermics, 2018-07, Vol.74, p.19-34
issn 0375-6505
1879-3576
language eng
recordid cdi_proquest_journals_2072281435
source Elsevier ScienceDirect Journals
subjects Computer simulation
Coupling
Deformation
Deformation mechanisms
Deserts
Discrete fractures
Electric power generation
Energy efficiency
Enhanced geothermal system
Enhanced geothermal systems
Flow paths
Fractures
Geothermal power
Heat
Heat recovery
Heat treatment
Hydraulics
Low level
Mathematical models
Matrix methods
Mechanical properties
Numerical simulation
Parameter sensitivity
Performance evaluation
Porous media
Pressure
Reservoirs
Sensitivity analysis
Simulation
Stress concentration
Temperature effects
THM coupling
Three dimensional models
title Numerical simulation of the heat extraction in 3D-EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20the%20heat%20extraction%20in%203D-EGS%20with%20thermal-hydraulic-mechanical%20coupling%20method%20based%20on%20discrete%20fractures%20model&rft.jtitle=Geothermics&rft.au=Yao,%20Jun&rft.date=2018-07&rft.volume=74&rft.spage=19&rft.epage=34&rft.pages=19-34&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2017.12.005&rft_dat=%3Cproquest_cross%3E2072281435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072281435&rft_id=info:pmid/&rft_els_id=S0375650517303188&rfr_iscdi=true