Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter

•Contaminant source parameters and heterogeneous conductivity field can be jointly identified using the EnKF by assimilating enough observation data.•Three synthetic scenarios in two different heterogeneous aquifers are used to test the joint parameter identification.•The analysis for the results of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2018-02, Vol.112, p.106-123
Hauptverfasser: Xu, Teng, Gómez-Hernández, J. Jaime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue
container_start_page 106
container_title Advances in water resources
container_volume 112
creator Xu, Teng
Gómez-Hernández, J. Jaime
description •Contaminant source parameters and heterogeneous conductivity field can be jointly identified using the EnKF by assimilating enough observation data.•Three synthetic scenarios in two different heterogeneous aquifers are used to test the joint parameter identification.•The analysis for the results of the three scenarios proves the ability of the EnKF in the joint parameter identification. Detecting where and when a contaminant entered an aquifer from observations downgradient of the source is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distribution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing estimates of the spatial location, initial release time, the duration of the release and the mass load of a point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assessment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in time both piezometric head and concentration observations from an array of observation wells. The method is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient number of state variable observations. The proposed approach is an important step towards contaminant source identification in real aquifers, which may have logconductivity spatial distributions with either Gaussian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters, the external sinks and sources and the initial and boundary conditions are assumed known.
doi_str_mv 10.1016/j.advwatres.2017.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2072280822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030917081730756X</els_id><sourcerecordid>2072280822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-cc91828a17edd430555768e3dc5fa54f2e2307da580a2a7e16b6bd4021f621043</originalsourceid><addsrcrecordid>eNqFkM2O1DAQhC0EEsPCM2CJc0K382PPcbUCFrESB-Bs9dgdrUeJvdjOoLny5GQ0iCunvlRVV31CvEVoEXB8f2zJn35RzVxaBahbVC0gPhM7NFo1-3HQz8UOOtg3qMG8FK9KOQKA6bXaid_fwrLOlSKntcjgOdYwBUc1pCjTJEm6FCstIVKssqQ1O5YUvXw8-0zrHNxF4FdXwynUszwFkvWR5damUq4yprzQ3BSXMkuOhZfDzPILzQtFOYW5cn4tXkw0F37z996IHx8_fL-7bx6-fvp8d_vQUI9DbZzbo1GGULP3fQfDMOjRcOfdMNHQT4pVB9rTYIAUacbxMB58DwqnUSH03Y14d819yunnuvWzx21O3F5aBVopA0apTaWvKpdTKZkn-5TDQvlsEewFuD3af8DtBbhFZTfgm_P26uRtxClwtsUFjo59yOyq9Sn8N-MP8PiRBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072280822</pqid></control><display><type>article</type><title>Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Teng ; Gómez-Hernández, J. Jaime</creator><creatorcontrib>Xu, Teng ; Gómez-Hernández, J. Jaime</creatorcontrib><description>•Contaminant source parameters and heterogeneous conductivity field can be jointly identified using the EnKF by assimilating enough observation data.•Three synthetic scenarios in two different heterogeneous aquifers are used to test the joint parameter identification.•The analysis for the results of the three scenarios proves the ability of the EnKF in the joint parameter identification. Detecting where and when a contaminant entered an aquifer from observations downgradient of the source is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distribution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing estimates of the spatial location, initial release time, the duration of the release and the mass load of a point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assessment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in time both piezometric head and concentration observations from an array of observation wells. The method is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient number of state variable observations. The proposed approach is an important step towards contaminant source identification in real aquifers, which may have logconductivity spatial distributions with either Gaussian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters, the external sinks and sources and the initial and boundary conditions are assumed known.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2017.12.011</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Aquifers ; Boundary conditions ; Conductivity ; Contaminant source identification ; Contaminants ; Contamination ; Distribution ; Duration ; Heterogeneity ; Histograms ; Hydraulic conductivity ; Hydraulic loading ; Hydraulics ; Identification ; Kalman filters ; Load distribution ; Low conductivity ; Methods ; Normal distribution ; Normal-score transform ; Observation wells ; Parameter estimation ; Parameter uncertainty ; Parameters ; Piezometric head ; Pollution load ; Restart ensemble Kalman filter ; Spatial distribution ; State variable ; Uncertainty</subject><ispartof>Advances in water resources, 2018-02, Vol.112, p.106-123</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-cc91828a17edd430555768e3dc5fa54f2e2307da580a2a7e16b6bd4021f621043</citedby><cites>FETCH-LOGICAL-a415t-cc91828a17edd430555768e3dc5fa54f2e2307da580a2a7e16b6bd4021f621043</cites><orcidid>0000-0002-0720-2196 ; 0000-0002-0207-9061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2017.12.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xu, Teng</creatorcontrib><creatorcontrib>Gómez-Hernández, J. Jaime</creatorcontrib><title>Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter</title><title>Advances in water resources</title><description>•Contaminant source parameters and heterogeneous conductivity field can be jointly identified using the EnKF by assimilating enough observation data.•Three synthetic scenarios in two different heterogeneous aquifers are used to test the joint parameter identification.•The analysis for the results of the three scenarios proves the ability of the EnKF in the joint parameter identification. Detecting where and when a contaminant entered an aquifer from observations downgradient of the source is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distribution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing estimates of the spatial location, initial release time, the duration of the release and the mass load of a point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assessment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in time both piezometric head and concentration observations from an array of observation wells. The method is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient number of state variable observations. The proposed approach is an important step towards contaminant source identification in real aquifers, which may have logconductivity spatial distributions with either Gaussian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters, the external sinks and sources and the initial and boundary conditions are assumed known.</description><subject>Algorithms</subject><subject>Aquifers</subject><subject>Boundary conditions</subject><subject>Conductivity</subject><subject>Contaminant source identification</subject><subject>Contaminants</subject><subject>Contamination</subject><subject>Distribution</subject><subject>Duration</subject><subject>Heterogeneity</subject><subject>Histograms</subject><subject>Hydraulic conductivity</subject><subject>Hydraulic loading</subject><subject>Hydraulics</subject><subject>Identification</subject><subject>Kalman filters</subject><subject>Load distribution</subject><subject>Low conductivity</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>Normal-score transform</subject><subject>Observation wells</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Piezometric head</subject><subject>Pollution load</subject><subject>Restart ensemble Kalman filter</subject><subject>Spatial distribution</subject><subject>State variable</subject><subject>Uncertainty</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM2O1DAQhC0EEsPCM2CJc0K382PPcbUCFrESB-Bs9dgdrUeJvdjOoLny5GQ0iCunvlRVV31CvEVoEXB8f2zJn35RzVxaBahbVC0gPhM7NFo1-3HQz8UOOtg3qMG8FK9KOQKA6bXaid_fwrLOlSKntcjgOdYwBUc1pCjTJEm6FCstIVKssqQ1O5YUvXw8-0zrHNxF4FdXwynUszwFkvWR5damUq4yprzQ3BSXMkuOhZfDzPILzQtFOYW5cn4tXkw0F37z996IHx8_fL-7bx6-fvp8d_vQUI9DbZzbo1GGULP3fQfDMOjRcOfdMNHQT4pVB9rTYIAUacbxMB58DwqnUSH03Y14d819yunnuvWzx21O3F5aBVopA0apTaWvKpdTKZkn-5TDQvlsEewFuD3af8DtBbhFZTfgm_P26uRtxClwtsUFjo59yOyq9Sn8N-MP8PiRBw</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Xu, Teng</creator><creator>Gómez-Hernández, J. Jaime</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QH</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TG</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0720-2196</orcidid><orcidid>https://orcid.org/0000-0002-0207-9061</orcidid></search><sort><creationdate>201802</creationdate><title>Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter</title><author>Xu, Teng ; Gómez-Hernández, J. Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-cc91828a17edd430555768e3dc5fa54f2e2307da580a2a7e16b6bd4021f621043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Aquifers</topic><topic>Boundary conditions</topic><topic>Conductivity</topic><topic>Contaminant source identification</topic><topic>Contaminants</topic><topic>Contamination</topic><topic>Distribution</topic><topic>Duration</topic><topic>Heterogeneity</topic><topic>Histograms</topic><topic>Hydraulic conductivity</topic><topic>Hydraulic loading</topic><topic>Hydraulics</topic><topic>Identification</topic><topic>Kalman filters</topic><topic>Load distribution</topic><topic>Low conductivity</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>Normal-score transform</topic><topic>Observation wells</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Piezometric head</topic><topic>Pollution load</topic><topic>Restart ensemble Kalman filter</topic><topic>Spatial distribution</topic><topic>State variable</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Teng</creatorcontrib><creatorcontrib>Gómez-Hernández, J. Jaime</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Teng</au><au>Gómez-Hernández, J. Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter</atitle><jtitle>Advances in water resources</jtitle><date>2018-02</date><risdate>2018</risdate><volume>112</volume><spage>106</spage><epage>123</epage><pages>106-123</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><abstract>•Contaminant source parameters and heterogeneous conductivity field can be jointly identified using the EnKF by assimilating enough observation data.•Three synthetic scenarios in two different heterogeneous aquifers are used to test the joint parameter identification.•The analysis for the results of the three scenarios proves the ability of the EnKF in the joint parameter identification. Detecting where and when a contaminant entered an aquifer from observations downgradient of the source is a difficult task; this identification becomes more challenging when the uncertainty about the spatial distribution of hydraulic conductivity is accounted for. In this paper, we have implemented an application of the restart normal-score ensemble Kalman filter (NS-EnKF) for the simultaneous identification of a contaminant source and the spatially variable hydraulic conductivity in an aquifer. The method is capable of providing estimates of the spatial location, initial release time, the duration of the release and the mass load of a point-contamination event, plus the spatial distribution of hydraulic conductivity together with an assessment of the estimation uncertainty of all the parameters. The method has been applied in synthetic aquifers exhibiting both Gaussian and non-Gaussian patterns. The identification is made possible by assimilating in time both piezometric head and concentration observations from an array of observation wells. The method is demonstrated in three different synthetic scenarios that combine hydraulic conductivities with unimodal and bimodal histograms, and releases in high and low conductivity zones. The results prove that the specific implementation of the EnKF is capable of recovering the source parameters with some uncertainty and of recovering the main patterns of heterogeneity of the hydraulic conductivity fields by assimilating a sufficient number of state variable observations. The proposed approach is an important step towards contaminant source identification in real aquifers, which may have logconductivity spatial distributions with either Gaussian or non-Gaussian features, yet, it is still far from practical applications since the transport parameters, the external sinks and sources and the initial and boundary conditions are assumed known.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2017.12.011</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0720-2196</orcidid><orcidid>https://orcid.org/0000-0002-0207-9061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2018-02, Vol.112, p.106-123
issn 0309-1708
1872-9657
language eng
recordid cdi_proquest_journals_2072280822
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Aquifers
Boundary conditions
Conductivity
Contaminant source identification
Contaminants
Contamination
Distribution
Duration
Heterogeneity
Histograms
Hydraulic conductivity
Hydraulic loading
Hydraulics
Identification
Kalman filters
Load distribution
Low conductivity
Methods
Normal distribution
Normal-score transform
Observation wells
Parameter estimation
Parameter uncertainty
Parameters
Piezometric head
Pollution load
Restart ensemble Kalman filter
Spatial distribution
State variable
Uncertainty
title Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20identification%20of%20a%20contaminant%20source%20and%20hydraulic%20conductivity%20via%20the%20restart%20normal-score%20ensemble%20Kalman%20filter&rft.jtitle=Advances%20in%20water%20resources&rft.au=Xu,%20Teng&rft.date=2018-02&rft.volume=112&rft.spage=106&rft.epage=123&rft.pages=106-123&rft.issn=0309-1708&rft.eissn=1872-9657&rft_id=info:doi/10.1016/j.advwatres.2017.12.011&rft_dat=%3Cproquest_cross%3E2072280822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072280822&rft_id=info:pmid/&rft_els_id=S030917081730756X&rfr_iscdi=true