Instance Selection Improves Geometric Mean Accuracy: A Study on Imbalanced Data Classification
A natural way of handling imbalanced data is to attempt to equalise the class frequencies and train the classifier of choice on balanced data. For two-class imbalanced problems, the classification success is typically measured by the geometric mean (GM) of the true positive and true negative rates....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kuncheva, Ludmila I Arnaiz-González, Álvar Díez-Pastor, José-Francisco Gunn, Iain A D |
description | A natural way of handling imbalanced data is to attempt to equalise the class frequencies and train the classifier of choice on balanced data. For two-class imbalanced problems, the classification success is typically measured by the geometric mean (GM) of the true positive and true negative rates. Here we prove that GM can be improved upon by instance selection, and give the theoretical conditions for such an improvement. We demonstrate that GM is non-monotonic with respect to the number of retained instances, which discourages systematic instance selection. We also show that balancing the distribution frequencies is inferior to a direct maximisation of GM. To verify our theoretical findings, we carried out an experimental study of 12 instance selection methods for imbalanced data, using 66 standard benchmark data sets. The results reveal possible room for new instance selection methods for imbalanced data. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072052282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072052282</sourcerecordid><originalsourceid>FETCH-proquest_journals_20720522823</originalsourceid><addsrcrecordid>eNqNjc0KgkAURocgSMp3uNA6mK6Z0k76ddHK1sVtusKIjuWMgW-fRg_Q6lucw_lGwsMgWC7iFeJE-NYWUkpcRxiGgSeuqbGOjGLIuGTldG0grZ5N_WYLR64rdo1WcGYykCjVNqS6DSSQufbRwVe-UzkEHrAjR7AtyVqda0VDaybGOZWW_d9Oxfywv2xPi_7h1bJ1t6JuG9OjG8oIZYgYY_Cf9QEEXkNx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072052282</pqid></control><display><type>article</type><title>Instance Selection Improves Geometric Mean Accuracy: A Study on Imbalanced Data Classification</title><source>Free E- Journals</source><creator>Kuncheva, Ludmila I ; Arnaiz-González, Álvar ; Díez-Pastor, José-Francisco ; Gunn, Iain A D</creator><creatorcontrib>Kuncheva, Ludmila I ; Arnaiz-González, Álvar ; Díez-Pastor, José-Francisco ; Gunn, Iain A D</creatorcontrib><description>A natural way of handling imbalanced data is to attempt to equalise the class frequencies and train the classifier of choice on balanced data. For two-class imbalanced problems, the classification success is typically measured by the geometric mean (GM) of the true positive and true negative rates. Here we prove that GM can be improved upon by instance selection, and give the theoretical conditions for such an improvement. We demonstrate that GM is non-monotonic with respect to the number of retained instances, which discourages systematic instance selection. We also show that balancing the distribution frequencies is inferior to a direct maximisation of GM. To verify our theoretical findings, we carried out an experimental study of 12 instance selection methods for imbalanced data, using 66 standard benchmark data sets. The results reveal possible room for new instance selection methods for imbalanced data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Geometric accuracy</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kuncheva, Ludmila I</creatorcontrib><creatorcontrib>Arnaiz-González, Álvar</creatorcontrib><creatorcontrib>Díez-Pastor, José-Francisco</creatorcontrib><creatorcontrib>Gunn, Iain A D</creatorcontrib><title>Instance Selection Improves Geometric Mean Accuracy: A Study on Imbalanced Data Classification</title><title>arXiv.org</title><description>A natural way of handling imbalanced data is to attempt to equalise the class frequencies and train the classifier of choice on balanced data. For two-class imbalanced problems, the classification success is typically measured by the geometric mean (GM) of the true positive and true negative rates. Here we prove that GM can be improved upon by instance selection, and give the theoretical conditions for such an improvement. We demonstrate that GM is non-monotonic with respect to the number of retained instances, which discourages systematic instance selection. We also show that balancing the distribution frequencies is inferior to a direct maximisation of GM. To verify our theoretical findings, we carried out an experimental study of 12 instance selection methods for imbalanced data, using 66 standard benchmark data sets. The results reveal possible room for new instance selection methods for imbalanced data.</description><subject>Classification</subject><subject>Geometric accuracy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjc0KgkAURocgSMp3uNA6mK6Z0k76ddHK1sVtusKIjuWMgW-fRg_Q6lucw_lGwsMgWC7iFeJE-NYWUkpcRxiGgSeuqbGOjGLIuGTldG0grZ5N_WYLR64rdo1WcGYykCjVNqS6DSSQufbRwVe-UzkEHrAjR7AtyVqda0VDaybGOZWW_d9Oxfywv2xPi_7h1bJ1t6JuG9OjG8oIZYgYY_Cf9QEEXkNx</recordid><startdate>20180419</startdate><enddate>20180419</enddate><creator>Kuncheva, Ludmila I</creator><creator>Arnaiz-González, Álvar</creator><creator>Díez-Pastor, José-Francisco</creator><creator>Gunn, Iain A D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180419</creationdate><title>Instance Selection Improves Geometric Mean Accuracy: A Study on Imbalanced Data Classification</title><author>Kuncheva, Ludmila I ; Arnaiz-González, Álvar ; Díez-Pastor, José-Francisco ; Gunn, Iain A D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20720522823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Geometric accuracy</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuncheva, Ludmila I</creatorcontrib><creatorcontrib>Arnaiz-González, Álvar</creatorcontrib><creatorcontrib>Díez-Pastor, José-Francisco</creatorcontrib><creatorcontrib>Gunn, Iain A D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuncheva, Ludmila I</au><au>Arnaiz-González, Álvar</au><au>Díez-Pastor, José-Francisco</au><au>Gunn, Iain A D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Instance Selection Improves Geometric Mean Accuracy: A Study on Imbalanced Data Classification</atitle><jtitle>arXiv.org</jtitle><date>2018-04-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>A natural way of handling imbalanced data is to attempt to equalise the class frequencies and train the classifier of choice on balanced data. For two-class imbalanced problems, the classification success is typically measured by the geometric mean (GM) of the true positive and true negative rates. Here we prove that GM can be improved upon by instance selection, and give the theoretical conditions for such an improvement. We demonstrate that GM is non-monotonic with respect to the number of retained instances, which discourages systematic instance selection. We also show that balancing the distribution frequencies is inferior to a direct maximisation of GM. To verify our theoretical findings, we carried out an experimental study of 12 instance selection methods for imbalanced data, using 66 standard benchmark data sets. The results reveal possible room for new instance selection methods for imbalanced data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2072052282 |
source | Free E- Journals |
subjects | Classification Geometric accuracy |
title | Instance Selection Improves Geometric Mean Accuracy: A Study on Imbalanced Data Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Instance%20Selection%20Improves%20Geometric%20Mean%20Accuracy:%20A%20Study%20on%20Imbalanced%20Data%20Classification&rft.jtitle=arXiv.org&rft.au=Kuncheva,%20Ludmila%20I&rft.date=2018-04-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2072052282%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072052282&rft_id=info:pmid/&rfr_iscdi=true |