Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent

Contrary to most natural language processing research, which makes use of static datasets, humans learn language interactively, grounded in an environment. In this work we propose an interactive learning procedure called Mechanical Turker Descent (MTD) and use it to train agents to execute natural l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Yang, Zhilin, Zhang, Saizheng, Urbanek, Jack, Feng, Will, Miller, Alexander H, Szlam, Arthur, Kiela, Douwe, Weston, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yang, Zhilin
Zhang, Saizheng
Urbanek, Jack
Feng, Will
Miller, Alexander H
Szlam, Arthur
Kiela, Douwe
Weston, Jason
description Contrary to most natural language processing research, which makes use of static datasets, humans learn language interactively, grounded in an environment. In this work we propose an interactive learning procedure called Mechanical Turker Descent (MTD) and use it to train agents to execute natural language commands grounded in a fantasy text adventure game. In MTD, Turkers compete to train better agents in the short term, and collaborate by sharing their agents' skills in the long term. This results in a gamified, engaging experience for the Turkers and a better quality teaching signal for the agents compared to static datasets, as the Turkers naturally adapt the training data to the agent's abilities.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2072007286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072007286</sourcerecordid><originalsourceid>FETCH-proquest_journals_20720072863</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBamMZ80DZ7LLRVe5n0Nmpyp-ax6O8z6ANaHM7inBkLRBxvonwrxIKF1g6cc5FmIknigF0qaR2anhS4DqHwpFDTDk5Ge2qxhVKS8lIhlCgNfb_bGypsOkl9I0e4evNAAwXaBsmt2PwuR4vhz0u2Ph6u-3P0NPrl0bp60N7QlGrBM8En8jT-7_oAnSs9uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072007286</pqid></control><display><type>article</type><title>Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent</title><source>Free E- Journals</source><creator>Yang, Zhilin ; Zhang, Saizheng ; Urbanek, Jack ; Feng, Will ; Miller, Alexander H ; Szlam, Arthur ; Kiela, Douwe ; Weston, Jason</creator><creatorcontrib>Yang, Zhilin ; Zhang, Saizheng ; Urbanek, Jack ; Feng, Will ; Miller, Alexander H ; Szlam, Arthur ; Kiela, Douwe ; Weston, Jason</creatorcontrib><description>Contrary to most natural language processing research, which makes use of static datasets, humans learn language interactively, grounded in an environment. In this work we propose an interactive learning procedure called Mechanical Turker Descent (MTD) and use it to train agents to execute natural language commands grounded in a fantasy text adventure game. In MTD, Turkers compete to train better agents in the short term, and collaborate by sharing their agents' skills in the long term. This results in a gamified, engaging experience for the Turkers and a better quality teaching signal for the agents compared to static datasets, as the Turkers naturally adapt the training data to the agent's abilities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Descent ; Interactive learning ; Mastering ; Natural language ; Natural language processing ; Signal quality</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Yang, Zhilin</creatorcontrib><creatorcontrib>Zhang, Saizheng</creatorcontrib><creatorcontrib>Urbanek, Jack</creatorcontrib><creatorcontrib>Feng, Will</creatorcontrib><creatorcontrib>Miller, Alexander H</creatorcontrib><creatorcontrib>Szlam, Arthur</creatorcontrib><creatorcontrib>Kiela, Douwe</creatorcontrib><creatorcontrib>Weston, Jason</creatorcontrib><title>Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent</title><title>arXiv.org</title><description>Contrary to most natural language processing research, which makes use of static datasets, humans learn language interactively, grounded in an environment. In this work we propose an interactive learning procedure called Mechanical Turker Descent (MTD) and use it to train agents to execute natural language commands grounded in a fantasy text adventure game. In MTD, Turkers compete to train better agents in the short term, and collaborate by sharing their agents' skills in the long term. This results in a gamified, engaging experience for the Turkers and a better quality teaching signal for the agents compared to static datasets, as the Turkers naturally adapt the training data to the agent's abilities.</description><subject>Datasets</subject><subject>Descent</subject><subject>Interactive learning</subject><subject>Mastering</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Signal quality</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBamMZ80DZ7LLRVe5n0Nmpyp-ax6O8z6ANaHM7inBkLRBxvonwrxIKF1g6cc5FmIknigF0qaR2anhS4DqHwpFDTDk5Ge2qxhVKS8lIhlCgNfb_bGypsOkl9I0e4evNAAwXaBsmt2PwuR4vhz0u2Ph6u-3P0NPrl0bp60N7QlGrBM8En8jT-7_oAnSs9uw</recordid><startdate>20180416</startdate><enddate>20180416</enddate><creator>Yang, Zhilin</creator><creator>Zhang, Saizheng</creator><creator>Urbanek, Jack</creator><creator>Feng, Will</creator><creator>Miller, Alexander H</creator><creator>Szlam, Arthur</creator><creator>Kiela, Douwe</creator><creator>Weston, Jason</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180416</creationdate><title>Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent</title><author>Yang, Zhilin ; Zhang, Saizheng ; Urbanek, Jack ; Feng, Will ; Miller, Alexander H ; Szlam, Arthur ; Kiela, Douwe ; Weston, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20720072863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Datasets</topic><topic>Descent</topic><topic>Interactive learning</topic><topic>Mastering</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Signal quality</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhilin</creatorcontrib><creatorcontrib>Zhang, Saizheng</creatorcontrib><creatorcontrib>Urbanek, Jack</creatorcontrib><creatorcontrib>Feng, Will</creatorcontrib><creatorcontrib>Miller, Alexander H</creatorcontrib><creatorcontrib>Szlam, Arthur</creatorcontrib><creatorcontrib>Kiela, Douwe</creatorcontrib><creatorcontrib>Weston, Jason</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhilin</au><au>Zhang, Saizheng</au><au>Urbanek, Jack</au><au>Feng, Will</au><au>Miller, Alexander H</au><au>Szlam, Arthur</au><au>Kiela, Douwe</au><au>Weston, Jason</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent</atitle><jtitle>arXiv.org</jtitle><date>2018-04-16</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Contrary to most natural language processing research, which makes use of static datasets, humans learn language interactively, grounded in an environment. In this work we propose an interactive learning procedure called Mechanical Turker Descent (MTD) and use it to train agents to execute natural language commands grounded in a fantasy text adventure game. In MTD, Turkers compete to train better agents in the short term, and collaborate by sharing their agents' skills in the long term. This results in a gamified, engaging experience for the Turkers and a better quality teaching signal for the agents compared to static datasets, as the Turkers naturally adapt the training data to the agent's abilities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2072007286
source Free E- Journals
subjects Datasets
Descent
Interactive learning
Mastering
Natural language
Natural language processing
Signal quality
title Mastering the Dungeon: Grounded Language Learning by Mechanical Turker Descent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A40%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mastering%20the%20Dungeon:%20Grounded%20Language%20Learning%20by%20Mechanical%20Turker%20Descent&rft.jtitle=arXiv.org&rft.au=Yang,%20Zhilin&rft.date=2018-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2072007286%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072007286&rft_id=info:pmid/&rfr_iscdi=true