Paramotopy: Parameter homotopies in parallel
Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This tech...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bates, Daniel J Brake, Danielle Niemerg, Matthew |
description | Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071996653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071996653</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719966533</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCUgsSszNL8kvqLRSALNTS1KLFDLywWKZqcUKmXkKBUDxnJzUHB4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyMDe0tDQzMzU2Jk4VAK_SMgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071996653</pqid></control><display><type>article</type><title>Paramotopy: Parameter homotopies in parallel</title><source>Free E- Journals</source><creator>Bates, Daniel J ; Brake, Danielle ; Niemerg, Matthew</creator><creatorcontrib>Bates, Daniel J ; Brake, Danielle ; Niemerg, Matthew</creatorcontrib><description>Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive systems ; Parameterization ; Parameters ; Polynomials ; Software packages</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bates, Daniel J</creatorcontrib><creatorcontrib>Brake, Danielle</creatorcontrib><creatorcontrib>Niemerg, Matthew</creatorcontrib><title>Paramotopy: Parameter homotopies in parallel</title><title>arXiv.org</title><description>Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts.</description><subject>Adaptive systems</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Software packages</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCUgsSszNL8kvqLRSALNTS1KLFDLywWKZqcUKmXkKBUDxnJzUHB4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyMDe0tDQzMzU2Jk4VAK_SMgM</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Bates, Daniel J</creator><creator>Brake, Danielle</creator><creator>Niemerg, Matthew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180411</creationdate><title>Paramotopy: Parameter homotopies in parallel</title><author>Bates, Daniel J ; Brake, Danielle ; Niemerg, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719966533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive systems</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Software packages</topic><toplevel>online_resources</toplevel><creatorcontrib>Bates, Daniel J</creatorcontrib><creatorcontrib>Brake, Danielle</creatorcontrib><creatorcontrib>Niemerg, Matthew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bates, Daniel J</au><au>Brake, Danielle</au><au>Niemerg, Matthew</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Paramotopy: Parameter homotopies in parallel</atitle><jtitle>arXiv.org</jtitle><date>2018-04-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071996653 |
source | Free E- Journals |
subjects | Adaptive systems Parameterization Parameters Polynomials Software packages |
title | Paramotopy: Parameter homotopies in parallel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Paramotopy:%20Parameter%20homotopies%20in%20parallel&rft.jtitle=arXiv.org&rft.au=Bates,%20Daniel%20J&rft.date=2018-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071996653%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071996653&rft_id=info:pmid/&rfr_iscdi=true |