Paramotopy: Parameter homotopies in parallel

Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Bates, Daniel J, Brake, Danielle, Niemerg, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bates, Daniel J
Brake, Danielle
Niemerg, Matthew
description Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071996653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071996653</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719966533</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCUgsSszNL8kvqLRSALNTS1KLFDLywWKZqcUKmXkKBUDxnJzUHB4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyMDe0tDQzMzU2Jk4VAK_SMgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071996653</pqid></control><display><type>article</type><title>Paramotopy: Parameter homotopies in parallel</title><source>Free E- Journals</source><creator>Bates, Daniel J ; Brake, Danielle ; Niemerg, Matthew</creator><creatorcontrib>Bates, Daniel J ; Brake, Danielle ; Niemerg, Matthew</creatorcontrib><description>Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive systems ; Parameterization ; Parameters ; Polynomials ; Software packages</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bates, Daniel J</creatorcontrib><creatorcontrib>Brake, Danielle</creatorcontrib><creatorcontrib>Niemerg, Matthew</creatorcontrib><title>Paramotopy: Parameter homotopies in parallel</title><title>arXiv.org</title><description>Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts.</description><subject>Adaptive systems</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Software packages</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCUgsSszNL8kvqLRSALNTS1KLFDLywWKZqcUKmXkKBUDxnJzUHB4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcyMDe0tDQzMzU2Jk4VAK_SMgM</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Bates, Daniel J</creator><creator>Brake, Danielle</creator><creator>Niemerg, Matthew</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180411</creationdate><title>Paramotopy: Parameter homotopies in parallel</title><author>Bates, Daniel J ; Brake, Danielle ; Niemerg, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719966533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive systems</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Software packages</topic><toplevel>online_resources</toplevel><creatorcontrib>Bates, Daniel J</creatorcontrib><creatorcontrib>Brake, Danielle</creatorcontrib><creatorcontrib>Niemerg, Matthew</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bates, Daniel J</au><au>Brake, Danielle</au><au>Niemerg, Matthew</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Paramotopy: Parameter homotopies in parallel</atitle><jtitle>arXiv.org</jtitle><date>2018-04-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Numerical algebraic geometry provides a number of efficient tools for approximating the solutions of polynomial systems. One such tool is the parameter homotopy, which can be an extremely efficient method to solve numerous polynomial systems that differ only in coefficients, not monomials. This technique is frequently used for solving a parameterized family of polynomial systems at multiple parameter values. Parameter homotopies have recently been useful in several areas of application and have been implemented in at least two software packages. This article describes Paramotopy, a new, parallel, optimized implementation of this technique, making use of the Bertini software package. The novel features of this implementation, not available elsewhere, include allowing for the simultaneous solutions of arbitrary polynomial systems in a parameterized family on an automatically generated (or manually provided) mesh in the parameter space of coefficients, front ends and back ends that are easily specialized to particular classes of problems, and adaptive techniques for solving polynomial systems near singular points in the parameter space. This last feature automates and simplifies a task that is important but often misunderstood by non-experts.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071996653
source Free E- Journals
subjects Adaptive systems
Parameterization
Parameters
Polynomials
Software packages
title Paramotopy: Parameter homotopies in parallel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Paramotopy:%20Parameter%20homotopies%20in%20parallel&rft.jtitle=arXiv.org&rft.au=Bates,%20Daniel%20J&rft.date=2018-04-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071996653%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071996653&rft_id=info:pmid/&rfr_iscdi=true