A Structure-Oriented Unsupervised Crawling Strategy for Social Media Sites
Existing techniques for efficiently crawling social media sites rely on URL patterns, query logs, and human supervision. This paper describes SOUrCe, a structure-oriented unsupervised crawler that uses page structures to learn how to crawl a social media site efficiently. SOUrCe consists of two stag...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-04 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Keyang Gao, Kyle Yingkai Callan, Jamie |
description | Existing techniques for efficiently crawling social media sites rely on URL patterns, query logs, and human supervision. This paper describes SOUrCe, a structure-oriented unsupervised crawler that uses page structures to learn how to crawl a social media site efficiently. SOUrCe consists of two stages. During its unsupervised learning phase, SOUrCe constructs a sitemap that clusters pages based on their structural similarity and generates a navigation table that describes how the different types of pages in the site are linked together. During its harvesting phase, it uses the navigation table and a crawling policy to guide the choice of which links to crawl next. Experiments show that this architecture supports different styles of crawling efficiently, and does a better job of staying focused on user-created contents than baseline methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071978103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071978103</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719781033</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW5pbNHkOKCKIH61mGXmUim91tRX-fQR_Q0-FwzoxEXIg0yTecL0jsXM8Y41vJs0xE5LynpcdQ-4CQXFGD8dDQu3FhBHxqN0mB6jVo031H5aF709YiLW2t1UAv0GhFS-3Brci8VYOD-MclWR8Pt-KUjGgfAZyvehvQTKniTKY7madMiP-uD8-1PLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071978103</pqid></control><display><type>article</type><title>A Structure-Oriented Unsupervised Crawling Strategy for Social Media Sites</title><source>Free E- Journals</source><creator>Xu, Keyang ; Gao, Kyle Yingkai ; Callan, Jamie</creator><creatorcontrib>Xu, Keyang ; Gao, Kyle Yingkai ; Callan, Jamie</creatorcontrib><description>Existing techniques for efficiently crawling social media sites rely on URL patterns, query logs, and human supervision. This paper describes SOUrCe, a structure-oriented unsupervised crawler that uses page structures to learn how to crawl a social media site efficiently. SOUrCe consists of two stages. During its unsupervised learning phase, SOUrCe constructs a sitemap that clusters pages based on their structural similarity and generates a navigation table that describes how the different types of pages in the site are linked together. During its harvesting phase, it uses the navigation table and a crawling policy to guide the choice of which links to crawl next. Experiments show that this architecture supports different styles of crawling efficiently, and does a better job of staying focused on user-created contents than baseline methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Digital media ; Harvesting ; Navigation ; Social networks</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Xu, Keyang</creatorcontrib><creatorcontrib>Gao, Kyle Yingkai</creatorcontrib><creatorcontrib>Callan, Jamie</creatorcontrib><title>A Structure-Oriented Unsupervised Crawling Strategy for Social Media Sites</title><title>arXiv.org</title><description>Existing techniques for efficiently crawling social media sites rely on URL patterns, query logs, and human supervision. This paper describes SOUrCe, a structure-oriented unsupervised crawler that uses page structures to learn how to crawl a social media site efficiently. SOUrCe consists of two stages. During its unsupervised learning phase, SOUrCe constructs a sitemap that clusters pages based on their structural similarity and generates a navigation table that describes how the different types of pages in the site are linked together. During its harvesting phase, it uses the navigation table and a crawling policy to guide the choice of which links to crawl next. Experiments show that this architecture supports different styles of crawling efficiently, and does a better job of staying focused on user-created contents than baseline methods.</description><subject>Digital media</subject><subject>Harvesting</subject><subject>Navigation</subject><subject>Social networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW5pbNHkOKCKIH61mGXmUim91tRX-fQR_Q0-FwzoxEXIg0yTecL0jsXM8Y41vJs0xE5LynpcdQ-4CQXFGD8dDQu3FhBHxqN0mB6jVo031H5aF709YiLW2t1UAv0GhFS-3Brci8VYOD-MclWR8Pt-KUjGgfAZyvehvQTKniTKY7madMiP-uD8-1PLU</recordid><startdate>20180408</startdate><enddate>20180408</enddate><creator>Xu, Keyang</creator><creator>Gao, Kyle Yingkai</creator><creator>Callan, Jamie</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180408</creationdate><title>A Structure-Oriented Unsupervised Crawling Strategy for Social Media Sites</title><author>Xu, Keyang ; Gao, Kyle Yingkai ; Callan, Jamie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719781033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Digital media</topic><topic>Harvesting</topic><topic>Navigation</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Keyang</creatorcontrib><creatorcontrib>Gao, Kyle Yingkai</creatorcontrib><creatorcontrib>Callan, Jamie</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Keyang</au><au>Gao, Kyle Yingkai</au><au>Callan, Jamie</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Structure-Oriented Unsupervised Crawling Strategy for Social Media Sites</atitle><jtitle>arXiv.org</jtitle><date>2018-04-08</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Existing techniques for efficiently crawling social media sites rely on URL patterns, query logs, and human supervision. This paper describes SOUrCe, a structure-oriented unsupervised crawler that uses page structures to learn how to crawl a social media site efficiently. SOUrCe consists of two stages. During its unsupervised learning phase, SOUrCe constructs a sitemap that clusters pages based on their structural similarity and generates a navigation table that describes how the different types of pages in the site are linked together. During its harvesting phase, it uses the navigation table and a crawling policy to guide the choice of which links to crawl next. Experiments show that this architecture supports different styles of crawling efficiently, and does a better job of staying focused on user-created contents than baseline methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071978103 |
source | Free E- Journals |
subjects | Digital media Harvesting Navigation Social networks |
title | A Structure-Oriented Unsupervised Crawling Strategy for Social Media Sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Structure-Oriented%20Unsupervised%20Crawling%20Strategy%20for%20Social%20Media%20Sites&rft.jtitle=arXiv.org&rft.au=Xu,%20Keyang&rft.date=2018-04-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071978103%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071978103&rft_id=info:pmid/&rfr_iscdi=true |