Multigoal-Oriented Error Estimates for Non-linear Problems

In this work, we further develop multigoal-oriented a posteriori error estimation with two objectives in mind. First, we formulate goal-oriented mesh adaptivity for multiple functionals of interest for nonlinear problems in which both the Partial Differential Equation (PDE) and the goal functionals...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Endtmayer, B, Langer, U, Wick, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Endtmayer, B
Langer, U
Wick, T
description In this work, we further develop multigoal-oriented a posteriori error estimation with two objectives in mind. First, we formulate goal-oriented mesh adaptivity for multiple functionals of interest for nonlinear problems in which both the Partial Differential Equation (PDE) and the goal functionals may be nonlinear. Our method is based on a posteriori error estimates in which the adjoint problem is used and a partition-of-unity is employed for the error localization that allows us to formulate the error estimator in the weak form.We provide a careful derivation of the primal and adjoint parts of the error estimator. The second objective is concerned with balancing the nonlinear iteration error with the discretization error yielding adaptive stopping rules for Newton's method. Our techniques are substantiated with several numerical examples including scalar PDEs and PDE systems, geometric singularities, and both nonlinear PDEs and nonlinear goal functionals. In these tests, up to six goal functionals are simultaneously controlled.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071973756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071973756</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719737563</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgOpIlp1K1U3PhZuC8RXyUlTfS99P524QFcDcPMjBVK60psN0otWEnUSylVbZUxumD78xiyfyUXxBU9xAxP3iAm5A1lP7gMxLvJLimK4CM45DdMjwADrdi8c4Gg_HHJ1sfmfjiJN6bPCJTbPo0Yp9Qqaaud1dbU-r_rC8pGNuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071973756</pqid></control><display><type>article</type><title>Multigoal-Oriented Error Estimates for Non-linear Problems</title><source>Free E- Journals</source><creator>Endtmayer, B ; Langer, U ; Wick, T</creator><creatorcontrib>Endtmayer, B ; Langer, U ; Wick, T</creatorcontrib><description>In this work, we further develop multigoal-oriented a posteriori error estimation with two objectives in mind. First, we formulate goal-oriented mesh adaptivity for multiple functionals of interest for nonlinear problems in which both the Partial Differential Equation (PDE) and the goal functionals may be nonlinear. Our method is based on a posteriori error estimates in which the adjoint problem is used and a partition-of-unity is employed for the error localization that allows us to formulate the error estimator in the weak form.We provide a careful derivation of the primal and adjoint parts of the error estimator. The second objective is concerned with balancing the nonlinear iteration error with the discretization error yielding adaptive stopping rules for Newton's method. Our techniques are substantiated with several numerical examples including scalar PDEs and PDE systems, geometric singularities, and both nonlinear PDEs and nonlinear goal functionals. In these tests, up to six goal functionals are simultaneously controlled.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Iterative methods ; Newton methods ; Nonlinear programming ; Partial differential equations ; Singularities</subject><ispartof>arXiv.org, 2018-04</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Endtmayer, B</creatorcontrib><creatorcontrib>Langer, U</creatorcontrib><creatorcontrib>Wick, T</creatorcontrib><title>Multigoal-Oriented Error Estimates for Non-linear Problems</title><title>arXiv.org</title><description>In this work, we further develop multigoal-oriented a posteriori error estimation with two objectives in mind. First, we formulate goal-oriented mesh adaptivity for multiple functionals of interest for nonlinear problems in which both the Partial Differential Equation (PDE) and the goal functionals may be nonlinear. Our method is based on a posteriori error estimates in which the adjoint problem is used and a partition-of-unity is employed for the error localization that allows us to formulate the error estimator in the weak form.We provide a careful derivation of the primal and adjoint parts of the error estimator. The second objective is concerned with balancing the nonlinear iteration error with the discretization error yielding adaptive stopping rules for Newton's method. Our techniques are substantiated with several numerical examples including scalar PDEs and PDE systems, geometric singularities, and both nonlinear PDEs and nonlinear goal functionals. In these tests, up to six goal functionals are simultaneously controlled.</description><subject>Iterative methods</subject><subject>Newton methods</subject><subject>Nonlinear programming</subject><subject>Partial differential equations</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgOpIlp1K1U3PhZuC8RXyUlTfS99P524QFcDcPMjBVK60psN0otWEnUSylVbZUxumD78xiyfyUXxBU9xAxP3iAm5A1lP7gMxLvJLimK4CM45DdMjwADrdi8c4Gg_HHJ1sfmfjiJN6bPCJTbPo0Yp9Qqaaud1dbU-r_rC8pGNuk</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Endtmayer, B</creator><creator>Langer, U</creator><creator>Wick, T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180404</creationdate><title>Multigoal-Oriented Error Estimates for Non-linear Problems</title><author>Endtmayer, B ; Langer, U ; Wick, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719737563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Iterative methods</topic><topic>Newton methods</topic><topic>Nonlinear programming</topic><topic>Partial differential equations</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Endtmayer, B</creatorcontrib><creatorcontrib>Langer, U</creatorcontrib><creatorcontrib>Wick, T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endtmayer, B</au><au>Langer, U</au><au>Wick, T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multigoal-Oriented Error Estimates for Non-linear Problems</atitle><jtitle>arXiv.org</jtitle><date>2018-04-04</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>In this work, we further develop multigoal-oriented a posteriori error estimation with two objectives in mind. First, we formulate goal-oriented mesh adaptivity for multiple functionals of interest for nonlinear problems in which both the Partial Differential Equation (PDE) and the goal functionals may be nonlinear. Our method is based on a posteriori error estimates in which the adjoint problem is used and a partition-of-unity is employed for the error localization that allows us to formulate the error estimator in the weak form.We provide a careful derivation of the primal and adjoint parts of the error estimator. The second objective is concerned with balancing the nonlinear iteration error with the discretization error yielding adaptive stopping rules for Newton's method. Our techniques are substantiated with several numerical examples including scalar PDEs and PDE systems, geometric singularities, and both nonlinear PDEs and nonlinear goal functionals. In these tests, up to six goal functionals are simultaneously controlled.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071973756
source Free E- Journals
subjects Iterative methods
Newton methods
Nonlinear programming
Partial differential equations
Singularities
title Multigoal-Oriented Error Estimates for Non-linear Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multigoal-Oriented%20Error%20Estimates%20for%20Non-linear%20Problems&rft.jtitle=arXiv.org&rft.au=Endtmayer,%20B&rft.date=2018-04-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071973756%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071973756&rft_id=info:pmid/&rfr_iscdi=true