An accurate calculation of the nucleon axial charge with lattice QCD
We report on a lattice QCD calculation of the nucleon axial charge, \(g_A\), using M\"{o}bius Domain-Wall fermions solved on the dynamical \(N_f=2+1+1\) HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, \(m_\pi\sim\{310...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Berkowitz, Evan Brantley, David Bouchard, Chris Chia Cheng Chang Clark, M A Garron, Nicholas Balint Joo Kurth, Thorsten Monahan, Chris Monge-Camacho, Henry Nicholson, Amy Orginos, Kostas Rinaldi, Enrico Vranas, Pavlos Walker-Loud, Andre |
description | We report on a lattice QCD calculation of the nucleon axial charge, \(g_A\), using M\"{o}bius Domain-Wall fermions solved on the dynamical \(N_f=2+1+1\) HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, \(m_\pi\sim\{310,220,130\}\) MeV. Three lattice spacings (\(a\sim\{0.15,0.12,0.09\}\) fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the \(m_\pi\sim220\) MeV, \(a\sim0.12\) fm point, a dedicated volume study is performed with \(m_\pi L \sim \{3.22,4.29,5.36\}\). Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of \(g_A\) with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6\% total uncertainty is \(g_A = 1.278(21)(26)\), with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071969880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071969880</sourcerecordid><originalsourceid>FETCH-proquest_journals_20719698803</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kCb2t5RWcSu4l0d4tSkh0XzQ49uFB3A1DDMrlgkpy6I9CLFheQgz51zUjagqmbHhaAGVSh4jgUKjksGonQU3QpwIbFKGFsWPRgNqQv8geOs4wfJFrQiu_bBj6xFNoPzHLdufT7f-Ujy9eyUK8T675O2S7oI3ZVd3bcvlf9cX86858A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071969880</pqid></control><display><type>article</type><title>An accurate calculation of the nucleon axial charge with lattice QCD</title><source>Free E- Journals</source><creator>Berkowitz, Evan ; Brantley, David ; Bouchard, Chris ; Chia Cheng Chang ; Clark, M A ; Garron, Nicholas ; Balint Joo ; Kurth, Thorsten ; Monahan, Chris ; Monge-Camacho, Henry ; Nicholson, Amy ; Orginos, Kostas ; Rinaldi, Enrico ; Vranas, Pavlos ; Walker-Loud, Andre</creator><creatorcontrib>Berkowitz, Evan ; Brantley, David ; Bouchard, Chris ; Chia Cheng Chang ; Clark, M A ; Garron, Nicholas ; Balint Joo ; Kurth, Thorsten ; Monahan, Chris ; Monge-Camacho, Henry ; Nicholson, Amy ; Orginos, Kostas ; Rinaldi, Enrico ; Vranas, Pavlos ; Walker-Loud, Andre</creatorcontrib><description>We report on a lattice QCD calculation of the nucleon axial charge, \(g_A\), using M\"{o}bius Domain-Wall fermions solved on the dynamical \(N_f=2+1+1\) HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, \(m_\pi\sim\{310,220,130\}\) MeV. Three lattice spacings (\(a\sim\{0.15,0.12,0.09\}\) fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the \(m_\pi\sim220\) MeV, \(a\sim0.12\) fm point, a dedicated volume study is performed with \(m_\pi L \sim \{3.22,4.29,5.36\}\). Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of \(g_A\) with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6\% total uncertainty is \(g_A = 1.278(21)(26)\), with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Extrapolation ; Fermions ; Quantum chromodynamics ; Uncertainty</subject><ispartof>arXiv.org, 2017-04</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Berkowitz, Evan</creatorcontrib><creatorcontrib>Brantley, David</creatorcontrib><creatorcontrib>Bouchard, Chris</creatorcontrib><creatorcontrib>Chia Cheng Chang</creatorcontrib><creatorcontrib>Clark, M A</creatorcontrib><creatorcontrib>Garron, Nicholas</creatorcontrib><creatorcontrib>Balint Joo</creatorcontrib><creatorcontrib>Kurth, Thorsten</creatorcontrib><creatorcontrib>Monahan, Chris</creatorcontrib><creatorcontrib>Monge-Camacho, Henry</creatorcontrib><creatorcontrib>Nicholson, Amy</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Vranas, Pavlos</creatorcontrib><creatorcontrib>Walker-Loud, Andre</creatorcontrib><title>An accurate calculation of the nucleon axial charge with lattice QCD</title><title>arXiv.org</title><description>We report on a lattice QCD calculation of the nucleon axial charge, \(g_A\), using M\"{o}bius Domain-Wall fermions solved on the dynamical \(N_f=2+1+1\) HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, \(m_\pi\sim\{310,220,130\}\) MeV. Three lattice spacings (\(a\sim\{0.15,0.12,0.09\}\) fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the \(m_\pi\sim220\) MeV, \(a\sim0.12\) fm point, a dedicated volume study is performed with \(m_\pi L \sim \{3.22,4.29,5.36\}\). Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of \(g_A\) with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6\% total uncertainty is \(g_A = 1.278(21)(26)\), with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass.</description><subject>Algorithms</subject><subject>Extrapolation</subject><subject>Fermions</subject><subject>Quantum chromodynamics</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kCb2t5RWcSu4l0d4tSkh0XzQ49uFB3A1DDMrlgkpy6I9CLFheQgz51zUjagqmbHhaAGVSh4jgUKjksGonQU3QpwIbFKGFsWPRgNqQv8geOs4wfJFrQiu_bBj6xFNoPzHLdufT7f-Ujy9eyUK8T675O2S7oI3ZVd3bcvlf9cX86858A</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Berkowitz, Evan</creator><creator>Brantley, David</creator><creator>Bouchard, Chris</creator><creator>Chia Cheng Chang</creator><creator>Clark, M A</creator><creator>Garron, Nicholas</creator><creator>Balint Joo</creator><creator>Kurth, Thorsten</creator><creator>Monahan, Chris</creator><creator>Monge-Camacho, Henry</creator><creator>Nicholson, Amy</creator><creator>Orginos, Kostas</creator><creator>Rinaldi, Enrico</creator><creator>Vranas, Pavlos</creator><creator>Walker-Loud, Andre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170404</creationdate><title>An accurate calculation of the nucleon axial charge with lattice QCD</title><author>Berkowitz, Evan ; Brantley, David ; Bouchard, Chris ; Chia Cheng Chang ; Clark, M A ; Garron, Nicholas ; Balint Joo ; Kurth, Thorsten ; Monahan, Chris ; Monge-Camacho, Henry ; Nicholson, Amy ; Orginos, Kostas ; Rinaldi, Enrico ; Vranas, Pavlos ; Walker-Loud, Andre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20719698803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Extrapolation</topic><topic>Fermions</topic><topic>Quantum chromodynamics</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Berkowitz, Evan</creatorcontrib><creatorcontrib>Brantley, David</creatorcontrib><creatorcontrib>Bouchard, Chris</creatorcontrib><creatorcontrib>Chia Cheng Chang</creatorcontrib><creatorcontrib>Clark, M A</creatorcontrib><creatorcontrib>Garron, Nicholas</creatorcontrib><creatorcontrib>Balint Joo</creatorcontrib><creatorcontrib>Kurth, Thorsten</creatorcontrib><creatorcontrib>Monahan, Chris</creatorcontrib><creatorcontrib>Monge-Camacho, Henry</creatorcontrib><creatorcontrib>Nicholson, Amy</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><creatorcontrib>Rinaldi, Enrico</creatorcontrib><creatorcontrib>Vranas, Pavlos</creatorcontrib><creatorcontrib>Walker-Loud, Andre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berkowitz, Evan</au><au>Brantley, David</au><au>Bouchard, Chris</au><au>Chia Cheng Chang</au><au>Clark, M A</au><au>Garron, Nicholas</au><au>Balint Joo</au><au>Kurth, Thorsten</au><au>Monahan, Chris</au><au>Monge-Camacho, Henry</au><au>Nicholson, Amy</au><au>Orginos, Kostas</au><au>Rinaldi, Enrico</au><au>Vranas, Pavlos</au><au>Walker-Loud, Andre</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An accurate calculation of the nucleon axial charge with lattice QCD</atitle><jtitle>arXiv.org</jtitle><date>2017-04-04</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We report on a lattice QCD calculation of the nucleon axial charge, \(g_A\), using M\"{o}bius Domain-Wall fermions solved on the dynamical \(N_f=2+1+1\) HISQ ensembles after they are smeared using the gradient-flow algorithm. The calculation is performed with three pion masses, \(m_\pi\sim\{310,220,130\}\) MeV. Three lattice spacings (\(a\sim\{0.15,0.12,0.09\}\) fm) are used with the heaviest pion mass, while the coarsest two spacings are used on the middle pion mass and only the coarsest spacing is used with the near physical pion mass. On the \(m_\pi\sim220\) MeV, \(a\sim0.12\) fm point, a dedicated volume study is performed with \(m_\pi L \sim \{3.22,4.29,5.36\}\). Using a new strategy motivated by the Feynman-Hellmann Theorem, we achieve a precise determination of \(g_A\) with relatively low statistics, and demonstrable control over the excited state, continuum, infinite volume and chiral extrapolation systematic uncertainties, the latter of which remains the dominant uncertainty. Our final determination at 2.6\% total uncertainty is \(g_A = 1.278(21)(26)\), with the first uncertainty including statistical and systematic uncertainties from fitting and the second including model selection systematics related to the chiral and continuum extrapolation. The largest reduction of the second uncertainty will come from a greater number of pion mass points as well as more precise lattice QCD results near the physical pion mass.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071969880 |
source | Free E- Journals |
subjects | Algorithms Extrapolation Fermions Quantum chromodynamics Uncertainty |
title | An accurate calculation of the nucleon axial charge with lattice QCD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20accurate%20calculation%20of%20the%20nucleon%20axial%20charge%20with%20lattice%20QCD&rft.jtitle=arXiv.org&rft.au=Berkowitz,%20Evan&rft.date=2017-04-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071969880%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071969880&rft_id=info:pmid/&rfr_iscdi=true |