Solving the L1 regularized least square problem via a box-constrained smooth minimization

In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-10
Hauptverfasser: Mohammadi, Majid, Hofman, Wout, Tan, Yaohua, S Hamid Mousavi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mohammadi, Majid
Hofman, Wout
Tan, Yaohua
S Hamid Mousavi
description In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071714973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071714973</sourcerecordid><originalsourceid>FETCH-proquest_journals_20717149733</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cMG5kEdrdBbFwU0XJ0k1til52DyK9Ovt4Ac4neEczgxllDFSbEtKFygPocMY0w2nVcUydLs4PSjbQGwlnAl42SQtvBrlE7QUIULok_AS3t7VWhoYlAABtfsUD2dD9ELZKQ3GudiCUVYZNYqonF2h-UvoIPMfl2h9PFz3p2I69UmGeO9c8nZSd4o54aTcccb-q74MfkLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071714973</pqid></control><display><type>article</type><title>Solving the L1 regularized least square problem via a box-constrained smooth minimization</title><source>Free E- Journals</source><creator>Mohammadi, Majid ; Hofman, Wout ; Tan, Yaohua ; S Hamid Mousavi</creator><creatorcontrib>Mohammadi, Majid ; Hofman, Wout ; Tan, Yaohua ; S Hamid Mousavi</creatorcontrib><description>In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Least squares ; Optimization</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohammadi, Majid</creatorcontrib><creatorcontrib>Hofman, Wout</creatorcontrib><creatorcontrib>Tan, Yaohua</creatorcontrib><creatorcontrib>S Hamid Mousavi</creatorcontrib><title>Solving the L1 regularized least square problem via a box-constrained smooth minimization</title><title>arXiv.org</title><description>In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported.</description><subject>Least squares</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cMG5kEdrdBbFwU0XJ0k1til52DyK9Ovt4Ac4neEczgxllDFSbEtKFygPocMY0w2nVcUydLs4PSjbQGwlnAl42SQtvBrlE7QUIULok_AS3t7VWhoYlAABtfsUD2dD9ELZKQ3GudiCUVYZNYqonF2h-UvoIPMfl2h9PFz3p2I69UmGeO9c8nZSd4o54aTcccb-q74MfkLM</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Mohammadi, Majid</creator><creator>Hofman, Wout</creator><creator>Tan, Yaohua</creator><creator>S Hamid Mousavi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211020</creationdate><title>Solving the L1 regularized least square problem via a box-constrained smooth minimization</title><author>Mohammadi, Majid ; Hofman, Wout ; Tan, Yaohua ; S Hamid Mousavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20717149733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Least squares</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, Majid</creatorcontrib><creatorcontrib>Hofman, Wout</creatorcontrib><creatorcontrib>Tan, Yaohua</creatorcontrib><creatorcontrib>S Hamid Mousavi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, Majid</au><au>Hofman, Wout</au><au>Tan, Yaohua</au><au>S Hamid Mousavi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Solving the L1 regularized least square problem via a box-constrained smooth minimization</atitle><jtitle>arXiv.org</jtitle><date>2021-10-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071714973
source Free E- Journals
subjects Least squares
Optimization
title Solving the L1 regularized least square problem via a box-constrained smooth minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Solving%20the%20L1%20regularized%20least%20square%20problem%20via%20a%20box-constrained%20smooth%20minimization&rft.jtitle=arXiv.org&rft.au=Mohammadi,%20Majid&rft.date=2021-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071714973%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071714973&rft_id=info:pmid/&rfr_iscdi=true