Solving the L1 regularized least square problem via a box-constrained smooth minimization
In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mohammadi, Majid Hofman, Wout Tan, Yaohua S Hamid Mousavi |
description | In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071714973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071714973</sourcerecordid><originalsourceid>FETCH-proquest_journals_20717149733</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cMG5kEdrdBbFwU0XJ0k1til52DyK9Ovt4Ac4neEczgxllDFSbEtKFygPocMY0w2nVcUydLs4PSjbQGwlnAl42SQtvBrlE7QUIULok_AS3t7VWhoYlAABtfsUD2dD9ELZKQ3GudiCUVYZNYqonF2h-UvoIPMfl2h9PFz3p2I69UmGeO9c8nZSd4o54aTcccb-q74MfkLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071714973</pqid></control><display><type>article</type><title>Solving the L1 regularized least square problem via a box-constrained smooth minimization</title><source>Free E- Journals</source><creator>Mohammadi, Majid ; Hofman, Wout ; Tan, Yaohua ; S Hamid Mousavi</creator><creatorcontrib>Mohammadi, Majid ; Hofman, Wout ; Tan, Yaohua ; S Hamid Mousavi</creatorcontrib><description>In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Least squares ; Optimization</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Mohammadi, Majid</creatorcontrib><creatorcontrib>Hofman, Wout</creatorcontrib><creatorcontrib>Tan, Yaohua</creatorcontrib><creatorcontrib>S Hamid Mousavi</creatorcontrib><title>Solving the L1 regularized least square problem via a box-constrained smooth minimization</title><title>arXiv.org</title><description>In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported.</description><subject>Least squares</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cMG5kEdrdBbFwU0XJ0k1til52DyK9Ovt4Ac4neEczgxllDFSbEtKFygPocMY0w2nVcUydLs4PSjbQGwlnAl42SQtvBrlE7QUIULok_AS3t7VWhoYlAABtfsUD2dD9ELZKQ3GudiCUVYZNYqonF2h-UvoIPMfl2h9PFz3p2I69UmGeO9c8nZSd4o54aTcccb-q74MfkLM</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Mohammadi, Majid</creator><creator>Hofman, Wout</creator><creator>Tan, Yaohua</creator><creator>S Hamid Mousavi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211020</creationdate><title>Solving the L1 regularized least square problem via a box-constrained smooth minimization</title><author>Mohammadi, Majid ; Hofman, Wout ; Tan, Yaohua ; S Hamid Mousavi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20717149733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Least squares</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, Majid</creatorcontrib><creatorcontrib>Hofman, Wout</creatorcontrib><creatorcontrib>Tan, Yaohua</creatorcontrib><creatorcontrib>S Hamid Mousavi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, Majid</au><au>Hofman, Wout</au><au>Tan, Yaohua</au><au>S Hamid Mousavi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Solving the L1 regularized least square problem via a box-constrained smooth minimization</atitle><jtitle>arXiv.org</jtitle><date>2021-10-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, an equivalent smooth minimization for the L1 regularized least square problem is proposed. The proposed problem is a convex box-constrained smooth minimization which allows applying fast optimization methods to find its solution. Further, it is investigated that the property "the dual of dual is primal" holds for the L1 regularized least square problem. A solver for the smooth problem is proposed, and its affinity to the proximal gradient is shown. Finally, the experiments on L1 and total variation regularized problems are performed, and the corresponding results are reported.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071714973 |
source | Free E- Journals |
subjects | Least squares Optimization |
title | Solving the L1 regularized least square problem via a box-constrained smooth minimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Solving%20the%20L1%20regularized%20least%20square%20problem%20via%20a%20box-constrained%20smooth%20minimization&rft.jtitle=arXiv.org&rft.au=Mohammadi,%20Majid&rft.date=2021-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071714973%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071714973&rft_id=info:pmid/&rfr_iscdi=true |