Decompressing Lempel-Ziv Compressed Text

We consider the problem of decompressing the Lempel--Ziv 77 representation of a string \(S\) of length \(n\) using a working space as close as possible to the size \(z\) of the input. The folklore solution for the problem runs in \(O(n)\) time but requires random access to the whole decompressed tex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
Hauptverfasser: Bille, Philip, Mikko Berggren Ettienne, Gagie, Travis, Inge Li Gørtz, Prezza, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bille, Philip
Mikko Berggren Ettienne
Gagie, Travis
Inge Li Gørtz
Prezza, Nicola
description We consider the problem of decompressing the Lempel--Ziv 77 representation of a string \(S\) of length \(n\) using a working space as close as possible to the size \(z\) of the input. The folklore solution for the problem runs in \(O(n)\) time but requires random access to the whole decompressed text. Another folklore solution is to convert LZ77 into a grammar of size \(O(z\log(n/z))\) and then stream \(S\) in linear time. In this paper, we show that \(O(n)\) time and \(O(z)\) working space can be achieved for constant-size alphabets. On general alphabets of size \(\sigma\), we describe (i) a trade-off achieving \(O(n\log^\delta \sigma)\) time and \(O(z\log^{1-\delta}\sigma)\) space for any \(0\leq \delta\leq 1\), and (ii) a solution achieving \(O(n)\) time and \(O(z\log\log (n/z))\) space. The latter solution, in particular, dominates both folklore algorithms for the problem. Our solutions can, more generally, extract any specified subsequence of \(S\) with little overheads on top of the linear running time and working space. As an immediate corollary, we show that our techniques yield improved results for pattern matching problems on LZ77-compressed text.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071695320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071695320</sourcerecordid><originalsourceid>FETCH-proquest_journals_20716953203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcElNzs8tKEotLs7MS1fwSc0tSM3RjcosU3CGCqemKISkVpTwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYG5oZmlqbGRgTFxqgCxADAl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071695320</pqid></control><display><type>article</type><title>Decompressing Lempel-Ziv Compressed Text</title><source>Free E- Journals</source><creator>Bille, Philip ; Mikko Berggren Ettienne ; Gagie, Travis ; Inge Li Gørtz ; Prezza, Nicola</creator><creatorcontrib>Bille, Philip ; Mikko Berggren Ettienne ; Gagie, Travis ; Inge Li Gørtz ; Prezza, Nicola</creatorcontrib><description>We consider the problem of decompressing the Lempel--Ziv 77 representation of a string \(S\) of length \(n\) using a working space as close as possible to the size \(z\) of the input. The folklore solution for the problem runs in \(O(n)\) time but requires random access to the whole decompressed text. Another folklore solution is to convert LZ77 into a grammar of size \(O(z\log(n/z))\) and then stream \(S\) in linear time. In this paper, we show that \(O(n)\) time and \(O(z)\) working space can be achieved for constant-size alphabets. On general alphabets of size \(\sigma\), we describe (i) a trade-off achieving \(O(n\log^\delta \sigma)\) time and \(O(z\log^{1-\delta}\sigma)\) space for any \(0\leq \delta\leq 1\), and (ii) a solution achieving \(O(n)\) time and \(O(z\log\log (n/z))\) space. The latter solution, in particular, dominates both folklore algorithms for the problem. Our solutions can, more generally, extract any specified subsequence of \(S\) with little overheads on top of the linear running time and working space. As an immediate corollary, we show that our techniques yield improved results for pattern matching problems on LZ77-compressed text.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alphabets ; Decompression ; Pattern matching ; Random access</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bille, Philip</creatorcontrib><creatorcontrib>Mikko Berggren Ettienne</creatorcontrib><creatorcontrib>Gagie, Travis</creatorcontrib><creatorcontrib>Inge Li Gørtz</creatorcontrib><creatorcontrib>Prezza, Nicola</creatorcontrib><title>Decompressing Lempel-Ziv Compressed Text</title><title>arXiv.org</title><description>We consider the problem of decompressing the Lempel--Ziv 77 representation of a string \(S\) of length \(n\) using a working space as close as possible to the size \(z\) of the input. The folklore solution for the problem runs in \(O(n)\) time but requires random access to the whole decompressed text. Another folklore solution is to convert LZ77 into a grammar of size \(O(z\log(n/z))\) and then stream \(S\) in linear time. In this paper, we show that \(O(n)\) time and \(O(z)\) working space can be achieved for constant-size alphabets. On general alphabets of size \(\sigma\), we describe (i) a trade-off achieving \(O(n\log^\delta \sigma)\) time and \(O(z\log^{1-\delta}\sigma)\) space for any \(0\leq \delta\leq 1\), and (ii) a solution achieving \(O(n)\) time and \(O(z\log\log (n/z))\) space. The latter solution, in particular, dominates both folklore algorithms for the problem. Our solutions can, more generally, extract any specified subsequence of \(S\) with little overheads on top of the linear running time and working space. As an immediate corollary, we show that our techniques yield improved results for pattern matching problems on LZ77-compressed text.</description><subject>Alphabets</subject><subject>Decompression</subject><subject>Pattern matching</subject><subject>Random access</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQcElNzs8tKEotLs7MS1fwSc0tSM3RjcosU3CGCqemKISkVpTwMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYG5oZmlqbGRgTFxqgCxADAl</recordid><startdate>20191104</startdate><enddate>20191104</enddate><creator>Bille, Philip</creator><creator>Mikko Berggren Ettienne</creator><creator>Gagie, Travis</creator><creator>Inge Li Gørtz</creator><creator>Prezza, Nicola</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191104</creationdate><title>Decompressing Lempel-Ziv Compressed Text</title><author>Bille, Philip ; Mikko Berggren Ettienne ; Gagie, Travis ; Inge Li Gørtz ; Prezza, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20716953203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alphabets</topic><topic>Decompression</topic><topic>Pattern matching</topic><topic>Random access</topic><toplevel>online_resources</toplevel><creatorcontrib>Bille, Philip</creatorcontrib><creatorcontrib>Mikko Berggren Ettienne</creatorcontrib><creatorcontrib>Gagie, Travis</creatorcontrib><creatorcontrib>Inge Li Gørtz</creatorcontrib><creatorcontrib>Prezza, Nicola</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bille, Philip</au><au>Mikko Berggren Ettienne</au><au>Gagie, Travis</au><au>Inge Li Gørtz</au><au>Prezza, Nicola</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Decompressing Lempel-Ziv Compressed Text</atitle><jtitle>arXiv.org</jtitle><date>2019-11-04</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We consider the problem of decompressing the Lempel--Ziv 77 representation of a string \(S\) of length \(n\) using a working space as close as possible to the size \(z\) of the input. The folklore solution for the problem runs in \(O(n)\) time but requires random access to the whole decompressed text. Another folklore solution is to convert LZ77 into a grammar of size \(O(z\log(n/z))\) and then stream \(S\) in linear time. In this paper, we show that \(O(n)\) time and \(O(z)\) working space can be achieved for constant-size alphabets. On general alphabets of size \(\sigma\), we describe (i) a trade-off achieving \(O(n\log^\delta \sigma)\) time and \(O(z\log^{1-\delta}\sigma)\) space for any \(0\leq \delta\leq 1\), and (ii) a solution achieving \(O(n)\) time and \(O(z\log\log (n/z))\) space. The latter solution, in particular, dominates both folklore algorithms for the problem. Our solutions can, more generally, extract any specified subsequence of \(S\) with little overheads on top of the linear running time and working space. As an immediate corollary, we show that our techniques yield improved results for pattern matching problems on LZ77-compressed text.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071695320
source Free E- Journals
subjects Alphabets
Decompression
Pattern matching
Random access
title Decompressing Lempel-Ziv Compressed Text
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Decompressing%20Lempel-Ziv%20Compressed%20Text&rft.jtitle=arXiv.org&rft.au=Bille,%20Philip&rft.date=2019-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071695320%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071695320&rft_id=info:pmid/&rfr_iscdi=true