A Deep Q-Learning Agent for the L-Game with Variable Batch Training
We employ the Deep Q-Learning algorithm with Experience Replay to train an agent capable of achieving a high-level of play in the L-Game while self-learning from low-dimensional states. We also employ variable batch size for training in order to mitigate the loss of the rare reward signal and signif...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Giannakopoulos, Petros Cotronis, Yannis |
description | We employ the Deep Q-Learning algorithm with Experience Replay to train an agent capable of achieving a high-level of play in the L-Game while self-learning from low-dimensional states. We also employ variable batch size for training in order to mitigate the loss of the rare reward signal and significantly accelerate training. Despite the large action space due to the number of possible moves, the low-dimensional state space and the rarity of rewards, which only come at the end of a game, DQL is successful in training an agent capable of strong play without the use of any search methods or domain knowledge. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071606817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071606817</sourcerecordid><originalsourceid>FETCH-proquest_journals_20716068173</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eOA6kCb2s631t-hGELflKa9tSk1rkuL1VfAArmYxMzMWSKUinm2kXLDQuU4IIZNUxrEKWJHDjmiEMy8JrdGmgbwh46EeLPiWoORHfBC8tG_hilbjrSfYor-3cLGov8eKzWvsHYU_Ltn6sL8UJz7a4TmR81U3TNZ8VCVFGiUiyaJU_Ve9AeijOCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071606817</pqid></control><display><type>article</type><title>A Deep Q-Learning Agent for the L-Game with Variable Batch Training</title><source>Free E- Journals</source><creator>Giannakopoulos, Petros ; Cotronis, Yannis</creator><creatorcontrib>Giannakopoulos, Petros ; Cotronis, Yannis</creatorcontrib><description>We employ the Deep Q-Learning algorithm with Experience Replay to train an agent capable of achieving a high-level of play in the L-Game while self-learning from low-dimensional states. We also employ variable batch size for training in order to mitigate the loss of the rare reward signal and significantly accelerate training. Despite the large action space due to the number of possible moves, the low-dimensional state space and the rarity of rewards, which only come at the end of a game, DQL is successful in training an agent capable of strong play without the use of any search methods or domain knowledge.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Games ; Machine learning ; Training</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Giannakopoulos, Petros</creatorcontrib><creatorcontrib>Cotronis, Yannis</creatorcontrib><title>A Deep Q-Learning Agent for the L-Game with Variable Batch Training</title><title>arXiv.org</title><description>We employ the Deep Q-Learning algorithm with Experience Replay to train an agent capable of achieving a high-level of play in the L-Game while self-learning from low-dimensional states. We also employ variable batch size for training in order to mitigate the loss of the rare reward signal and significantly accelerate training. Despite the large action space due to the number of possible moves, the low-dimensional state space and the rarity of rewards, which only come at the end of a game, DQL is successful in training an agent capable of strong play without the use of any search methods or domain knowledge.</description><subject>Algorithms</subject><subject>Games</subject><subject>Machine learning</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eOA6kCb2s631t-hGELflKa9tSk1rkuL1VfAArmYxMzMWSKUinm2kXLDQuU4IIZNUxrEKWJHDjmiEMy8JrdGmgbwh46EeLPiWoORHfBC8tG_hilbjrSfYor-3cLGov8eKzWvsHYU_Ltn6sL8UJz7a4TmR81U3TNZ8VCVFGiUiyaJU_Ve9AeijOCs</recordid><startdate>20180217</startdate><enddate>20180217</enddate><creator>Giannakopoulos, Petros</creator><creator>Cotronis, Yannis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180217</creationdate><title>A Deep Q-Learning Agent for the L-Game with Variable Batch Training</title><author>Giannakopoulos, Petros ; Cotronis, Yannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20716068173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Games</topic><topic>Machine learning</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Giannakopoulos, Petros</creatorcontrib><creatorcontrib>Cotronis, Yannis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannakopoulos, Petros</au><au>Cotronis, Yannis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Deep Q-Learning Agent for the L-Game with Variable Batch Training</atitle><jtitle>arXiv.org</jtitle><date>2018-02-17</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We employ the Deep Q-Learning algorithm with Experience Replay to train an agent capable of achieving a high-level of play in the L-Game while self-learning from low-dimensional states. We also employ variable batch size for training in order to mitigate the loss of the rare reward signal and significantly accelerate training. Despite the large action space due to the number of possible moves, the low-dimensional state space and the rarity of rewards, which only come at the end of a game, DQL is successful in training an agent capable of strong play without the use of any search methods or domain knowledge.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071606817 |
source | Free E- Journals |
subjects | Algorithms Games Machine learning Training |
title | A Deep Q-Learning Agent for the L-Game with Variable Batch Training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Deep%20Q-Learning%20Agent%20for%20the%20L-Game%20with%20Variable%20Batch%20Training&rft.jtitle=arXiv.org&rft.au=Giannakopoulos,%20Petros&rft.date=2018-02-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071606817%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071606817&rft_id=info:pmid/&rfr_iscdi=true |