Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections
Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Khoshdeli, Mina Parvin, Bahram |
description | Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071553539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071553539</sourcerecordid><originalsourceid>FETCH-proquest_journals_20715535393</originalsourceid><addsrcrecordid>eNqNzkELgjAYxvERBEn5HV4Iuglzy6xzGh4yAruGiL7ZZGzmtoPfvh36AJ2ew_93eBYkYJzH0XHP2IqExgyUUnZIWZLwgDwzxBGu2ExKqB5K3aE0kKEUChuLBkonrRglws210jO4v1FpO4--CQXFLofKNl53UAhjtdT9DBW2VmhlNmT5aqTB8Ldrsr3kj3MRjZP-ODS2HrSblE81o2nsHyX8xP9TX7uBQ0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071553539</pqid></control><display><type>article</type><title>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections</title><source>Free E- Journals</source><creator>Khoshdeli, Mina ; Parvin, Bahram</creator><creatorcontrib>Khoshdeli, Mina ; Parvin, Bahram</creatorcontrib><description>Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Brain ; Deep learning ; Histology ; Segmentation</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><title>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections</title><title>arXiv.org</title><description>Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Deep learning</subject><subject>Histology</subject><subject>Segmentation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzkELgjAYxvERBEn5HV4Iuglzy6xzGh4yAruGiL7ZZGzmtoPfvh36AJ2ew_93eBYkYJzH0XHP2IqExgyUUnZIWZLwgDwzxBGu2ExKqB5K3aE0kKEUChuLBkonrRglws210jO4v1FpO4--CQXFLofKNl53UAhjtdT9DBW2VmhlNmT5aqTB8Ldrsr3kj3MRjZP-ODS2HrSblE81o2nsHyX8xP9TX7uBQ0M</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Khoshdeli, Mina</creator><creator>Parvin, Bahram</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180214</creationdate><title>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections</title><author>Khoshdeli, Mina ; Parvin, Bahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20715535393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Deep learning</topic><topic>Histology</topic><topic>Segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoshdeli, Mina</au><au>Parvin, Bahram</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections</atitle><jtitle>arXiv.org</jtitle><date>2018-02-14</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071553539 |
source | Free E- Journals |
subjects | Artificial neural networks Brain Deep learning Histology Segmentation |
title | Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Learning%20Models%20Delineates%20Multiple%20Nuclear%20Phenotypes%20in%20H&E%20Stained%20Histology%20Sections&rft.jtitle=arXiv.org&rft.au=Khoshdeli,%20Mina&rft.date=2018-02-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071553539%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071553539&rft_id=info:pmid/&rfr_iscdi=true |