Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections

Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Khoshdeli, Mina, Parvin, Bahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Khoshdeli, Mina
Parvin, Bahram
description Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071553539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071553539</sourcerecordid><originalsourceid>FETCH-proquest_journals_20715535393</originalsourceid><addsrcrecordid>eNqNzkELgjAYxvERBEn5HV4Iuglzy6xzGh4yAruGiL7ZZGzmtoPfvh36AJ2ew_93eBYkYJzH0XHP2IqExgyUUnZIWZLwgDwzxBGu2ExKqB5K3aE0kKEUChuLBkonrRglws210jO4v1FpO4--CQXFLofKNl53UAhjtdT9DBW2VmhlNmT5aqTB8Ldrsr3kj3MRjZP-ODS2HrSblE81o2nsHyX8xP9TX7uBQ0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071553539</pqid></control><display><type>article</type><title>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&amp;E Stained Histology Sections</title><source>Free E- Journals</source><creator>Khoshdeli, Mina ; Parvin, Bahram</creator><creatorcontrib>Khoshdeli, Mina ; Parvin, Bahram</creatorcontrib><description>Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Brain ; Deep learning ; Histology ; Segmentation</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><title>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&amp;E Stained Histology Sections</title><title>arXiv.org</title><description>Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Deep learning</subject><subject>Histology</subject><subject>Segmentation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzkELgjAYxvERBEn5HV4Iuglzy6xzGh4yAruGiL7ZZGzmtoPfvh36AJ2ew_93eBYkYJzH0XHP2IqExgyUUnZIWZLwgDwzxBGu2ExKqB5K3aE0kKEUChuLBkonrRglws210jO4v1FpO4--CQXFLofKNl53UAhjtdT9DBW2VmhlNmT5aqTB8Ldrsr3kj3MRjZP-ODS2HrSblE81o2nsHyX8xP9TX7uBQ0M</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Khoshdeli, Mina</creator><creator>Parvin, Bahram</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180214</creationdate><title>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&amp;E Stained Histology Sections</title><author>Khoshdeli, Mina ; Parvin, Bahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20715535393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Deep learning</topic><topic>Histology</topic><topic>Segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Khoshdeli, Mina</creatorcontrib><creatorcontrib>Parvin, Bahram</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoshdeli, Mina</au><au>Parvin, Bahram</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&amp;E Stained Histology Sections</atitle><jtitle>arXiv.org</jtitle><date>2018-02-14</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Nuclear segmentation is an important step for profiling aberrant regions of histology sections. However, segmentation is a complex problem as a result of variations in nuclear geometry (e.g., size, shape), nuclear type (e.g., epithelial, fibroblast), and nuclear phenotypes (e.g., vesicular, aneuploidy). The problem is further complicated as a result of variations in sample preparation. It is shown and validated that fusion of very deep convolutional networks overcomes (i) complexities associated with multiple nuclear phenotypes, and (ii) separation of overlapping nuclei. The fusion relies on integrating of networks that learn region- and boundary-based representations. The system has been validated on a diverse set of nuclear phenotypes that correspond to the breast and brain histology sections.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071553539
source Free E- Journals
subjects Artificial neural networks
Brain
Deep learning
Histology
Segmentation
title Deep Learning Models Delineates Multiple Nuclear Phenotypes in H&E Stained Histology Sections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Learning%20Models%20Delineates%20Multiple%20Nuclear%20Phenotypes%20in%20H&E%20Stained%20Histology%20Sections&rft.jtitle=arXiv.org&rft.au=Khoshdeli,%20Mina&rft.date=2018-02-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071553539%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071553539&rft_id=info:pmid/&rfr_iscdi=true