Spatial and temporal analyses of air pollutants and meteorological driving forces in Beijing–Tianjin–Hebei region, China

Due to its negative impact on the living environment of human beings, ambient air pollution has become a global challenge to human health. In this study, surface observations of six criteria air pollutants, including PM 2.5 , PM 10 , SO 2 , NO 2 , CO and O 3 , were collected to investigate the spati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2018-07, Vol.77 (14), p.1-19, Article 540
Hauptverfasser: Hu, Zizhan, Tang, Xuguang, Zheng, Chen, Guan, Menglin, Shen, Jingwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 14
container_start_page 1
container_title Environmental earth sciences
container_volume 77
creator Hu, Zizhan
Tang, Xuguang
Zheng, Chen
Guan, Menglin
Shen, Jingwei
description Due to its negative impact on the living environment of human beings, ambient air pollution has become a global challenge to human health. In this study, surface observations of six criteria air pollutants, including PM 2.5 , PM 10 , SO 2 , NO 2 , CO and O 3 , were collected to investigate the spatial and temporal variation in the Beijing–Tianjin–Hebei (BTH) region during 2013–2016 and to explore the relationships between atmospheric pollutants and meteorological variables using quantile regression model (QRM) and multiple linear regression model (MLRM). The results show that BTH region has experienced significant air pollution, and the southern part generally has more severe conditions. The annual average indicates clear decreasing trends of the particulate matters, SO 2 and CO concentrations over the last 4 years and slight increasing trends of NO 2 and O 3 in several cities. The seasonal and monthly characteristics indicate that the concentrations of five species reach their maxima in the winter and their minima in the summer, whereas O 3 has the opposite behaviour. Finally, the pseudo R 2 values show that the QRMs have the best performance in the winter, followed by spring, fall, and summer. Specifically, all the meteorological factors have significant impacts on air pollution but change with pollutants and seasons. The MLRM results are generally consistent with the QRM results in all seasons, and the inconsistencies are more common in the fall and winter. The results of this research provide foundational knowledge for predicting the response of air quality to climate change in the BTH region.
doi_str_mv 10.1007/s12665-018-7705-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071525384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071525384</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dcd8d5af10e31bb8fe58483f0d76e6a6339749f35dd9e3395370b9d973ac45dd3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouOg-gLeAV6tJ06TJURd1hQUPrueQNknN0m1q0hUKHnwH39AnMbsrenIu88_w_QPzA3CG0SVGqLyKOGeMZgjzrCwRzcYDMMGcsYzlQhz-ao6OwTTGFUpFMBGITcD7U68Gp1qoOg0Hs-592A2qHaOJ0FuoXIC9b9vNoLoh7ri1GYwPvvWNqxOtg3tzXQOtD3XyuA7eGLdKm6-Pz6VTXZJJzU1lHAymcb67gLMX16lTcGRVG830p5-A57vb5WyeLR7vH2bXi6wmmA2ZrjXXVFmMDMFVxa2hvODEIl0ywxQjRJSFsIRqLUwaKClRJbQoiaqLtCQn4Hx_tw_-dWPiIFd-E9KPUeaoxDSnhBeJwnuqDj7GYKzsg1urMEqM5DZnuc9ZppzlNmc5Jk--98TEdo0Jf5f_N30Dg8CEfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071525384</pqid></control><display><type>article</type><title>Spatial and temporal analyses of air pollutants and meteorological driving forces in Beijing–Tianjin–Hebei region, China</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hu, Zizhan ; Tang, Xuguang ; Zheng, Chen ; Guan, Menglin ; Shen, Jingwei</creator><creatorcontrib>Hu, Zizhan ; Tang, Xuguang ; Zheng, Chen ; Guan, Menglin ; Shen, Jingwei</creatorcontrib><description>Due to its negative impact on the living environment of human beings, ambient air pollution has become a global challenge to human health. In this study, surface observations of six criteria air pollutants, including PM 2.5 , PM 10 , SO 2 , NO 2 , CO and O 3 , were collected to investigate the spatial and temporal variation in the Beijing–Tianjin–Hebei (BTH) region during 2013–2016 and to explore the relationships between atmospheric pollutants and meteorological variables using quantile regression model (QRM) and multiple linear regression model (MLRM). The results show that BTH region has experienced significant air pollution, and the southern part generally has more severe conditions. The annual average indicates clear decreasing trends of the particulate matters, SO 2 and CO concentrations over the last 4 years and slight increasing trends of NO 2 and O 3 in several cities. The seasonal and monthly characteristics indicate that the concentrations of five species reach their maxima in the winter and their minima in the summer, whereas O 3 has the opposite behaviour. Finally, the pseudo R 2 values show that the QRMs have the best performance in the winter, followed by spring, fall, and summer. Specifically, all the meteorological factors have significant impacts on air pollution but change with pollutants and seasons. The MLRM results are generally consistent with the QRM results in all seasons, and the inconsistencies are more common in the fall and winter. The results of this research provide foundational knowledge for predicting the response of air quality to climate change in the BTH region.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-018-7705-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air pollution ; Air quality ; Biogeosciences ; Climate change ; Earth and Environmental Science ; Earth Sciences ; Environmental impact ; Environmental Science and Engineering ; Forces (mechanics) ; Geochemistry ; Geology ; Hydrology/Water Resources ; Nitrogen dioxide ; Original Article ; Particulate matter ; Pollutants ; Pollution ; Regression analysis ; Regression models ; Seasons ; Spatial analysis ; Sulfur dioxide ; Summer ; Temporal variations ; Terrestrial Pollution ; Trends ; Winter</subject><ispartof>Environmental earth sciences, 2018-07, Vol.77 (14), p.1-19, Article 540</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Environmental Earth Sciences is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dcd8d5af10e31bb8fe58483f0d76e6a6339749f35dd9e3395370b9d973ac45dd3</citedby><cites>FETCH-LOGICAL-c316t-dcd8d5af10e31bb8fe58483f0d76e6a6339749f35dd9e3395370b9d973ac45dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-018-7705-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-018-7705-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hu, Zizhan</creatorcontrib><creatorcontrib>Tang, Xuguang</creatorcontrib><creatorcontrib>Zheng, Chen</creatorcontrib><creatorcontrib>Guan, Menglin</creatorcontrib><creatorcontrib>Shen, Jingwei</creatorcontrib><title>Spatial and temporal analyses of air pollutants and meteorological driving forces in Beijing–Tianjin–Hebei region, China</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Due to its negative impact on the living environment of human beings, ambient air pollution has become a global challenge to human health. In this study, surface observations of six criteria air pollutants, including PM 2.5 , PM 10 , SO 2 , NO 2 , CO and O 3 , were collected to investigate the spatial and temporal variation in the Beijing–Tianjin–Hebei (BTH) region during 2013–2016 and to explore the relationships between atmospheric pollutants and meteorological variables using quantile regression model (QRM) and multiple linear regression model (MLRM). The results show that BTH region has experienced significant air pollution, and the southern part generally has more severe conditions. The annual average indicates clear decreasing trends of the particulate matters, SO 2 and CO concentrations over the last 4 years and slight increasing trends of NO 2 and O 3 in several cities. The seasonal and monthly characteristics indicate that the concentrations of five species reach their maxima in the winter and their minima in the summer, whereas O 3 has the opposite behaviour. Finally, the pseudo R 2 values show that the QRMs have the best performance in the winter, followed by spring, fall, and summer. Specifically, all the meteorological factors have significant impacts on air pollution but change with pollutants and seasons. The MLRM results are generally consistent with the QRM results in all seasons, and the inconsistencies are more common in the fall and winter. The results of this research provide foundational knowledge for predicting the response of air quality to climate change in the BTH region.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Biogeosciences</subject><subject>Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental impact</subject><subject>Environmental Science and Engineering</subject><subject>Forces (mechanics)</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrology/Water Resources</subject><subject>Nitrogen dioxide</subject><subject>Original Article</subject><subject>Particulate matter</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Seasons</subject><subject>Spatial analysis</subject><subject>Sulfur dioxide</subject><subject>Summer</subject><subject>Temporal variations</subject><subject>Terrestrial Pollution</subject><subject>Trends</subject><subject>Winter</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKxDAQhoMouOg-gLeAV6tJ06TJURd1hQUPrueQNknN0m1q0hUKHnwH39AnMbsrenIu88_w_QPzA3CG0SVGqLyKOGeMZgjzrCwRzcYDMMGcsYzlQhz-ao6OwTTGFUpFMBGITcD7U68Gp1qoOg0Hs-592A2qHaOJ0FuoXIC9b9vNoLoh7ri1GYwPvvWNqxOtg3tzXQOtD3XyuA7eGLdKm6-Pz6VTXZJJzU1lHAymcb67gLMX16lTcGRVG830p5-A57vb5WyeLR7vH2bXi6wmmA2ZrjXXVFmMDMFVxa2hvODEIl0ywxQjRJSFsIRqLUwaKClRJbQoiaqLtCQn4Hx_tw_-dWPiIFd-E9KPUeaoxDSnhBeJwnuqDj7GYKzsg1urMEqM5DZnuc9ZppzlNmc5Jk--98TEdo0Jf5f_N30Dg8CEfw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Hu, Zizhan</creator><creator>Tang, Xuguang</creator><creator>Zheng, Chen</creator><creator>Guan, Menglin</creator><creator>Shen, Jingwei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20180701</creationdate><title>Spatial and temporal analyses of air pollutants and meteorological driving forces in Beijing–Tianjin–Hebei region, China</title><author>Hu, Zizhan ; Tang, Xuguang ; Zheng, Chen ; Guan, Menglin ; Shen, Jingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dcd8d5af10e31bb8fe58483f0d76e6a6339749f35dd9e3395370b9d973ac45dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Biogeosciences</topic><topic>Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental impact</topic><topic>Environmental Science and Engineering</topic><topic>Forces (mechanics)</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrology/Water Resources</topic><topic>Nitrogen dioxide</topic><topic>Original Article</topic><topic>Particulate matter</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Seasons</topic><topic>Spatial analysis</topic><topic>Sulfur dioxide</topic><topic>Summer</topic><topic>Temporal variations</topic><topic>Terrestrial Pollution</topic><topic>Trends</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zizhan</creatorcontrib><creatorcontrib>Tang, Xuguang</creatorcontrib><creatorcontrib>Zheng, Chen</creatorcontrib><creatorcontrib>Guan, Menglin</creatorcontrib><creatorcontrib>Shen, Jingwei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zizhan</au><au>Tang, Xuguang</au><au>Zheng, Chen</au><au>Guan, Menglin</au><au>Shen, Jingwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial and temporal analyses of air pollutants and meteorological driving forces in Beijing–Tianjin–Hebei region, China</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>77</volume><issue>14</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>540</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Due to its negative impact on the living environment of human beings, ambient air pollution has become a global challenge to human health. In this study, surface observations of six criteria air pollutants, including PM 2.5 , PM 10 , SO 2 , NO 2 , CO and O 3 , were collected to investigate the spatial and temporal variation in the Beijing–Tianjin–Hebei (BTH) region during 2013–2016 and to explore the relationships between atmospheric pollutants and meteorological variables using quantile regression model (QRM) and multiple linear regression model (MLRM). The results show that BTH region has experienced significant air pollution, and the southern part generally has more severe conditions. The annual average indicates clear decreasing trends of the particulate matters, SO 2 and CO concentrations over the last 4 years and slight increasing trends of NO 2 and O 3 in several cities. The seasonal and monthly characteristics indicate that the concentrations of five species reach their maxima in the winter and their minima in the summer, whereas O 3 has the opposite behaviour. Finally, the pseudo R 2 values show that the QRMs have the best performance in the winter, followed by spring, fall, and summer. Specifically, all the meteorological factors have significant impacts on air pollution but change with pollutants and seasons. The MLRM results are generally consistent with the QRM results in all seasons, and the inconsistencies are more common in the fall and winter. The results of this research provide foundational knowledge for predicting the response of air quality to climate change in the BTH region.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-018-7705-y</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2018-07, Vol.77 (14), p.1-19, Article 540
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_2071525384
source SpringerLink Journals - AutoHoldings
subjects Air pollution
Air quality
Biogeosciences
Climate change
Earth and Environmental Science
Earth Sciences
Environmental impact
Environmental Science and Engineering
Forces (mechanics)
Geochemistry
Geology
Hydrology/Water Resources
Nitrogen dioxide
Original Article
Particulate matter
Pollutants
Pollution
Regression analysis
Regression models
Seasons
Spatial analysis
Sulfur dioxide
Summer
Temporal variations
Terrestrial Pollution
Trends
Winter
title Spatial and temporal analyses of air pollutants and meteorological driving forces in Beijing–Tianjin–Hebei region, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20and%20temporal%20analyses%20of%20air%20pollutants%20and%20meteorological%20driving%20forces%20in%20Beijing%E2%80%93Tianjin%E2%80%93Hebei%20region,%20China&rft.jtitle=Environmental%20earth%20sciences&rft.au=Hu,%20Zizhan&rft.date=2018-07-01&rft.volume=77&rft.issue=14&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=540&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-018-7705-y&rft_dat=%3Cproquest_cross%3E2071525384%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071525384&rft_id=info:pmid/&rfr_iscdi=true