Dyck Paths and Positroids from Unit Interval Orders

It is well known that the number of non-isomorphic unit interval orders on \([n]\) equals the \(n\)-th Catalan number. Using work of Skandera and Reed and work of Postnikov, we show that each unit interval order on \([n]\) naturally induces a rank \(n\) positroid on \([2n]\). We call the positroids...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Chavez, Anastasia, Gotti, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chavez, Anastasia
Gotti, Felix
description It is well known that the number of non-isomorphic unit interval orders on \([n]\) equals the \(n\)-th Catalan number. Using work of Skandera and Reed and work of Postnikov, we show that each unit interval order on \([n]\) naturally induces a rank \(n\) positroid on \([2n]\). We call the positroids produced in this fashion unit interval positroids. We characterize the unit interval positroids by describing their associated decorated permutations, showing that each one must be a \(2n\)-cycle encoding a Dyck path of length \(2n\). We also provide recipes to read the decorated permutation of a unit interval positroid \(P\) from both the antiadjacency matrix and the interval representation of the unit interval order inducing \(P\). Using our characterization of the decorated permutation, we describe the Le-diagrams corresponding to unit interval positroids. In addition, we give a necessary and sufficient condition for two Grassmann cells parameterized by unit interval positroids to be adjacent inside the Grassmann cell complex. Finally, we propose a potential approach to find the \(f\)-vector of a unit interval order.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071319960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071319960</sourcerecordid><originalsourceid>FETCH-proquest_journals_20713199603</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdqlMzlYISCzJKFZIzEtRCMgvziwpys9MKVZIK8rPVQjNyyxR8MwrSS0qS8xR8C9KSS0q5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0NjQ0tLMwNj4lQBAOrNM9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071319960</pqid></control><display><type>article</type><title>Dyck Paths and Positroids from Unit Interval Orders</title><source>Free E- Journals</source><creator>Chavez, Anastasia ; Gotti, Felix</creator><creatorcontrib>Chavez, Anastasia ; Gotti, Felix</creatorcontrib><description>It is well known that the number of non-isomorphic unit interval orders on \([n]\) equals the \(n\)-th Catalan number. Using work of Skandera and Reed and work of Postnikov, we show that each unit interval order on \([n]\) naturally induces a rank \(n\) positroid on \([2n]\). We call the positroids produced in this fashion unit interval positroids. We characterize the unit interval positroids by describing their associated decorated permutations, showing that each one must be a \(2n\)-cycle encoding a Dyck path of length \(2n\). We also provide recipes to read the decorated permutation of a unit interval positroid \(P\) from both the antiadjacency matrix and the interval representation of the unit interval order inducing \(P\). Using our characterization of the decorated permutation, we describe the Le-diagrams corresponding to unit interval positroids. In addition, we give a necessary and sufficient condition for two Grassmann cells parameterized by unit interval positroids to be adjacent inside the Grassmann cell complex. Finally, we propose a potential approach to find the \(f\)-vector of a unit interval order.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Capital stock ; Decoration ; Economic models ; Input output analysis ; Permutations</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>Gotti, Felix</creatorcontrib><title>Dyck Paths and Positroids from Unit Interval Orders</title><title>arXiv.org</title><description>It is well known that the number of non-isomorphic unit interval orders on \([n]\) equals the \(n\)-th Catalan number. Using work of Skandera and Reed and work of Postnikov, we show that each unit interval order on \([n]\) naturally induces a rank \(n\) positroid on \([2n]\). We call the positroids produced in this fashion unit interval positroids. We characterize the unit interval positroids by describing their associated decorated permutations, showing that each one must be a \(2n\)-cycle encoding a Dyck path of length \(2n\). We also provide recipes to read the decorated permutation of a unit interval positroid \(P\) from both the antiadjacency matrix and the interval representation of the unit interval order inducing \(P\). Using our characterization of the decorated permutation, we describe the Le-diagrams corresponding to unit interval positroids. In addition, we give a necessary and sufficient condition for two Grassmann cells parameterized by unit interval positroids to be adjacent inside the Grassmann cell complex. Finally, we propose a potential approach to find the \(f\)-vector of a unit interval order.</description><subject>Capital stock</subject><subject>Decoration</subject><subject>Economic models</subject><subject>Input output analysis</subject><subject>Permutations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdqlMzlYISCzJKFZIzEtRCMgvziwpys9MKVZIK8rPVQjNyyxR8MwrSS0qS8xR8C9KSS0q5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMDc0NjQ0tLMwNj4lQBAOrNM9o</recordid><startdate>20180212</startdate><enddate>20180212</enddate><creator>Chavez, Anastasia</creator><creator>Gotti, Felix</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180212</creationdate><title>Dyck Paths and Positroids from Unit Interval Orders</title><author>Chavez, Anastasia ; Gotti, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20713199603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capital stock</topic><topic>Decoration</topic><topic>Economic models</topic><topic>Input output analysis</topic><topic>Permutations</topic><toplevel>online_resources</toplevel><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>Gotti, Felix</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez, Anastasia</au><au>Gotti, Felix</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Dyck Paths and Positroids from Unit Interval Orders</atitle><jtitle>arXiv.org</jtitle><date>2018-02-12</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>It is well known that the number of non-isomorphic unit interval orders on \([n]\) equals the \(n\)-th Catalan number. Using work of Skandera and Reed and work of Postnikov, we show that each unit interval order on \([n]\) naturally induces a rank \(n\) positroid on \([2n]\). We call the positroids produced in this fashion unit interval positroids. We characterize the unit interval positroids by describing their associated decorated permutations, showing that each one must be a \(2n\)-cycle encoding a Dyck path of length \(2n\). We also provide recipes to read the decorated permutation of a unit interval positroid \(P\) from both the antiadjacency matrix and the interval representation of the unit interval order inducing \(P\). Using our characterization of the decorated permutation, we describe the Le-diagrams corresponding to unit interval positroids. In addition, we give a necessary and sufficient condition for two Grassmann cells parameterized by unit interval positroids to be adjacent inside the Grassmann cell complex. Finally, we propose a potential approach to find the \(f\)-vector of a unit interval order.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071319960
source Free E- Journals
subjects Capital stock
Decoration
Economic models
Input output analysis
Permutations
title Dyck Paths and Positroids from Unit Interval Orders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Dyck%20Paths%20and%20Positroids%20from%20Unit%20Interval%20Orders&rft.jtitle=arXiv.org&rft.au=Chavez,%20Anastasia&rft.date=2018-02-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071319960%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071319960&rft_id=info:pmid/&rfr_iscdi=true