Affine representations of fractional processes with applications in mathematical finance

Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To addr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Harms, Philipp, Stefanovits, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Harms, Philipp
Stefanovits, David
description Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071313910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071313910</sourcerecordid><originalsourceid>FETCH-proquest_journals_20713139103</originalsourceid><addsrcrecordid>eNqNjE0KwjAUhIMgWLR3eOC6kB9rdSmieAAX7iSUF5oSk5iX4vWN0AO4mWGGj2_BKqmUaA47KVesJho553LfybZVFXucjLEeIWFMSOizzjZ4gmDAJN3_hnYQU-iRCAk-Ng-gY3S2n0nr4aXzgCXK56DotO9xw5ZGO8J67jXbXi_3860prveElJ9jmFKR01PyTiihjoKr_6gvQ4tDCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071313910</pqid></control><display><type>article</type><title>Affine representations of fractional processes with applications in mathematical finance</title><source>Freely Accessible Journals</source><creator>Harms, Philipp ; Stefanovits, David</creator><creatorcontrib>Harms, Philipp ; Stefanovits, David</creatorcontrib><description>Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dependence ; Representations</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Harms, Philipp</creatorcontrib><creatorcontrib>Stefanovits, David</creatorcontrib><title>Affine representations of fractional processes with applications in mathematical finance</title><title>arXiv.org</title><description>Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features.</description><subject>Dependence</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjE0KwjAUhIMgWLR3eOC6kB9rdSmieAAX7iSUF5oSk5iX4vWN0AO4mWGGj2_BKqmUaA47KVesJho553LfybZVFXucjLEeIWFMSOizzjZ4gmDAJN3_hnYQU-iRCAk-Ng-gY3S2n0nr4aXzgCXK56DotO9xw5ZGO8J67jXbXi_3860prveElJ9jmFKR01PyTiihjoKr_6gvQ4tDCQ</recordid><startdate>20180206</startdate><enddate>20180206</enddate><creator>Harms, Philipp</creator><creator>Stefanovits, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180206</creationdate><title>Affine representations of fractional processes with applications in mathematical finance</title><author>Harms, Philipp ; Stefanovits, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20713139103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dependence</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Harms, Philipp</creatorcontrib><creatorcontrib>Stefanovits, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harms, Philipp</au><au>Stefanovits, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Affine representations of fractional processes with applications in mathematical finance</atitle><jtitle>arXiv.org</jtitle><date>2018-02-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071313910
source Freely Accessible Journals
subjects Dependence
Representations
title Affine representations of fractional processes with applications in mathematical finance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Affine%20representations%20of%20fractional%20processes%20with%20applications%20in%20mathematical%20finance&rft.jtitle=arXiv.org&rft.au=Harms,%20Philipp&rft.date=2018-02-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071313910%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071313910&rft_id=info:pmid/&rfr_iscdi=true