Affine representations of fractional processes with applications in mathematical finance
Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To addr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Harms, Philipp Stefanovits, David |
description | Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071313910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071313910</sourcerecordid><originalsourceid>FETCH-proquest_journals_20713139103</originalsourceid><addsrcrecordid>eNqNjE0KwjAUhIMgWLR3eOC6kB9rdSmieAAX7iSUF5oSk5iX4vWN0AO4mWGGj2_BKqmUaA47KVesJho553LfybZVFXucjLEeIWFMSOizzjZ4gmDAJN3_hnYQU-iRCAk-Ng-gY3S2n0nr4aXzgCXK56DotO9xw5ZGO8J67jXbXi_3860prveElJ9jmFKR01PyTiihjoKr_6gvQ4tDCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071313910</pqid></control><display><type>article</type><title>Affine representations of fractional processes with applications in mathematical finance</title><source>Freely Accessible Journals</source><creator>Harms, Philipp ; Stefanovits, David</creator><creatorcontrib>Harms, Philipp ; Stefanovits, David</creatorcontrib><description>Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dependence ; Representations</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Harms, Philipp</creatorcontrib><creatorcontrib>Stefanovits, David</creatorcontrib><title>Affine representations of fractional processes with applications in mathematical finance</title><title>arXiv.org</title><description>Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features.</description><subject>Dependence</subject><subject>Representations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjE0KwjAUhIMgWLR3eOC6kB9rdSmieAAX7iSUF5oSk5iX4vWN0AO4mWGGj2_BKqmUaA47KVesJho553LfybZVFXucjLEeIWFMSOizzjZ4gmDAJN3_hnYQU-iRCAk-Ng-gY3S2n0nr4aXzgCXK56DotO9xw5ZGO8J67jXbXi_3860prveElJ9jmFKR01PyTiihjoKr_6gvQ4tDCQ</recordid><startdate>20180206</startdate><enddate>20180206</enddate><creator>Harms, Philipp</creator><creator>Stefanovits, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180206</creationdate><title>Affine representations of fractional processes with applications in mathematical finance</title><author>Harms, Philipp ; Stefanovits, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20713139103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dependence</topic><topic>Representations</topic><toplevel>online_resources</toplevel><creatorcontrib>Harms, Philipp</creatorcontrib><creatorcontrib>Stefanovits, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harms, Philipp</au><au>Stefanovits, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Affine representations of fractional processes with applications in mathematical finance</atitle><jtitle>arXiv.org</jtitle><date>2018-02-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Fractional processes have gained popularity in financial modeling due to the dependence structure of their increments and the roughness of their sample paths. The non-Markovianity of these processes gives, however, rise to conceptual and practical difficulties in computation and calibration. To address these issues, we show that a certain class of fractional processes can be represented as linear functionals of an infinite dimensional affine process. This can be derived from integral representations similar to those of Carmona, Coutin, Montseny, and Muravlev. We demonstrate by means of several examples that this allows one to construct tractable financial models with fractional features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071313910 |
source | Freely Accessible Journals |
subjects | Dependence Representations |
title | Affine representations of fractional processes with applications in mathematical finance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Affine%20representations%20of%20fractional%20processes%20with%20applications%20in%20mathematical%20finance&rft.jtitle=arXiv.org&rft.au=Harms,%20Philipp&rft.date=2018-02-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071313910%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071313910&rft_id=info:pmid/&rfr_iscdi=true |