Data driven time scale in Gaussian quasi-likelihood inference

We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-01
Hauptverfasser: Eguchi, Shoichi, Masuda, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Eguchi, Shoichi
Masuda, Hiroki
description We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both model parameters and sampling stepsize in a fully explicit way, and prove that they are jointly asymptotically normally distributed. The \(L^{q}\)-boundedness of the obtained estimator is also derived. Further, we propose the Schwarz (BIC) type statistics for model selection and show its model-selection consistency. We conducted some numerical experiments and found that the observed finite-sample performance well supports our theoretical findings. Also provided is a real data example.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071312153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071312153</sourcerecordid><originalsourceid>FETCH-proquest_journals_20713121533</originalsourceid><addsrcrecordid>eNqNyksOgjAQgOHGxESi3KGJa5I-QNy48nkA92QCQxysrXSo55eFB3D1L75_ITJjrS72pTErkTMPSimzq01V2UwcTjCB7CJ90MuJXii5BYeSvLxCYibwckzAVDh6oqNHCN2MPUb0LW7EsgfHmP-6FtvL-X68Fe8YxoQ8NUNI0c_UGFVrq42urP3v-gJkVjfC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071312153</pqid></control><display><type>article</type><title>Data driven time scale in Gaussian quasi-likelihood inference</title><source>Free E- Journals</source><creator>Eguchi, Shoichi ; Masuda, Hiroki</creator><creatorcontrib>Eguchi, Shoichi ; Masuda, Hiroki</creatorcontrib><description>We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both model parameters and sampling stepsize in a fully explicit way, and prove that they are jointly asymptotically normally distributed. The \(L^{q}\)-boundedness of the obtained estimator is also derived. Further, we propose the Schwarz (BIC) type statistics for model selection and show its model-selection consistency. We conducted some numerical experiments and found that the observed finite-sample performance well supports our theoretical findings. Also provided is a real data example.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical models ; Parameter estimation ; Sampling</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Eguchi, Shoichi</creatorcontrib><creatorcontrib>Masuda, Hiroki</creatorcontrib><title>Data driven time scale in Gaussian quasi-likelihood inference</title><title>arXiv.org</title><description>We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both model parameters and sampling stepsize in a fully explicit way, and prove that they are jointly asymptotically normally distributed. The \(L^{q}\)-boundedness of the obtained estimator is also derived. Further, we propose the Schwarz (BIC) type statistics for model selection and show its model-selection consistency. We conducted some numerical experiments and found that the observed finite-sample performance well supports our theoretical findings. Also provided is a real data example.</description><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Sampling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksOgjAQgOHGxESi3KGJa5I-QNy48nkA92QCQxysrXSo55eFB3D1L75_ITJjrS72pTErkTMPSimzq01V2UwcTjCB7CJ90MuJXii5BYeSvLxCYibwckzAVDh6oqNHCN2MPUb0LW7EsgfHmP-6FtvL-X68Fe8YxoQ8NUNI0c_UGFVrq42urP3v-gJkVjfC</recordid><startdate>20190131</startdate><enddate>20190131</enddate><creator>Eguchi, Shoichi</creator><creator>Masuda, Hiroki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190131</creationdate><title>Data driven time scale in Gaussian quasi-likelihood inference</title><author>Eguchi, Shoichi ; Masuda, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20713121533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Sampling</topic><toplevel>online_resources</toplevel><creatorcontrib>Eguchi, Shoichi</creatorcontrib><creatorcontrib>Masuda, Hiroki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eguchi, Shoichi</au><au>Masuda, Hiroki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Data driven time scale in Gaussian quasi-likelihood inference</atitle><jtitle>arXiv.org</jtitle><date>2019-01-31</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study parametric estimation of ergodic diffusions observed at high frequency. Different from the previous studies, we suppose that sampling stepsize is unknown, thereby making the conventional Gaussian quasi-likelihood not directly applicable. In this situation, we construct estimators of both model parameters and sampling stepsize in a fully explicit way, and prove that they are jointly asymptotically normally distributed. The \(L^{q}\)-boundedness of the obtained estimator is also derived. Further, we propose the Schwarz (BIC) type statistics for model selection and show its model-selection consistency. We conducted some numerical experiments and found that the observed finite-sample performance well supports our theoretical findings. Also provided is a real data example.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071312153
source Free E- Journals
subjects Mathematical models
Parameter estimation
Sampling
title Data driven time scale in Gaussian quasi-likelihood inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Data%20driven%20time%20scale%20in%20Gaussian%20quasi-likelihood%20inference&rft.jtitle=arXiv.org&rft.au=Eguchi,%20Shoichi&rft.date=2019-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071312153%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071312153&rft_id=info:pmid/&rfr_iscdi=true