High-strength epoxy nanocomposites for 3D printing

Clay-based nanoscale filler materials are commonly used to impart unique and desirable properties to polymer resins. Small volume fractions of nanoclay have disproportionately large effects on stiffness, toughness, strength, and gas barrier properties of polymer matrices due to their high surface-to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2018-05, Vol.160, p.9-20
Hauptverfasser: Hmeidat, Nadim S., Kemp, James W., Compton, Brett G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 9
container_title Composites science and technology
container_volume 160
creator Hmeidat, Nadim S.
Kemp, James W.
Compton, Brett G.
description Clay-based nanoscale filler materials are commonly used to impart unique and desirable properties to polymer resins. Small volume fractions of nanoclay have disproportionately large effects on stiffness, toughness, strength, and gas barrier properties of polymer matrices due to their high surface-to-volume ratio and platelet morphology. Recent work has suggested that highly loaded epoxy/clay/fiber mixtures possess desirable rheological properties for use as feedstock materials for direct-write 3D printing, but little is known about the effects of the deposition process on the resulting properties of the printed composites. In this work we characterize the effects of a functionalized nanoclay on the rheological properties and printing behavior of an epoxy resin in the absence of fiber reinforcements, and investigate the effects of clay content and the deposition process on the thermo-mechanical properties of the resulting 3D-printed epoxy/clay nanocomposites. The rheological properties of ink formulations containing up to 12.5 wt% nanoclay are measured using parallel plate rheometry, and the thermo-mechanical properties of the printed composites are measured using 3-pt flexural testing, dynamic mechanical analysis, and thermo-gravimetric analysis. Flexural strength values range from 80 MPa to 100 MPa for cast samples and printed samples tested transverse to the printing direction, and up to 143 MPa for printed samples tested parallel to the print direction. Although the observed anisotropic strength values indicate that the deposition process does impart orientation to the nanoclay, the strength in each direction is significantly greater than values reported for 3D printed thermoplastic composites, suggesting that the epoxy/clay system has high potential for further development as a 3D printing feedstock material.
doi_str_mv 10.1016/j.compscitech.2018.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071307559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S026635381732849X</els_id><sourcerecordid>2071307559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-98c96affb81e2cc131a60ca95402d6f41574ed3b08808506c8b09c5a0b04d9313</originalsourceid><addsrcrecordid>eNqNkLFOwzAQhi0EEqXwDkHMCWc7duwRFWiRKrHAbCWO0zqidrBdRN8eV2VgZLrl_7-7-xC6xVBhwPx-rLTfTVHbZPS2IoBFBbQCEGdohkUjSwwMztEMCOclZVRcoqsYRwBomCQzRFZ2sy1jCsZt0rYwk_8-FK51_oj1MWNjMfhQ0MdiCtYl6zbX6GJoP6K5-Z1z9P789LZYlevX5cviYV3qGjeplEJL3g5DJ7AhWmOKWw66lawG0vOhxqypTU87EAIEA65FB1KzFjqoe0kxnaO7E3cK_nNvYlKj3weXVyoCDab5AyZzSp5SOvgYgxlUvnPXhoPCoI6K1Kj-KFJHRQqoyopyd3HqmvzGlzVB5ZRx2vQ2GJ1U7-0_KD_eDXR7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071307559</pqid></control><display><type>article</type><title>High-strength epoxy nanocomposites for 3D printing</title><source>Elsevier ScienceDirect Journals</source><creator>Hmeidat, Nadim S. ; Kemp, James W. ; Compton, Brett G.</creator><creatorcontrib>Hmeidat, Nadim S. ; Kemp, James W. ; Compton, Brett G.</creatorcontrib><description>Clay-based nanoscale filler materials are commonly used to impart unique and desirable properties to polymer resins. Small volume fractions of nanoclay have disproportionately large effects on stiffness, toughness, strength, and gas barrier properties of polymer matrices due to their high surface-to-volume ratio and platelet morphology. Recent work has suggested that highly loaded epoxy/clay/fiber mixtures possess desirable rheological properties for use as feedstock materials for direct-write 3D printing, but little is known about the effects of the deposition process on the resulting properties of the printed composites. In this work we characterize the effects of a functionalized nanoclay on the rheological properties and printing behavior of an epoxy resin in the absence of fiber reinforcements, and investigate the effects of clay content and the deposition process on the thermo-mechanical properties of the resulting 3D-printed epoxy/clay nanocomposites. The rheological properties of ink formulations containing up to 12.5 wt% nanoclay are measured using parallel plate rheometry, and the thermo-mechanical properties of the printed composites are measured using 3-pt flexural testing, dynamic mechanical analysis, and thermo-gravimetric analysis. Flexural strength values range from 80 MPa to 100 MPa for cast samples and printed samples tested transverse to the printing direction, and up to 143 MPa for printed samples tested parallel to the print direction. Although the observed anisotropic strength values indicate that the deposition process does impart orientation to the nanoclay, the strength in each direction is significantly greater than values reported for 3D printed thermoplastic composites, suggesting that the epoxy/clay system has high potential for further development as a 3D printing feedstock material.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2018.03.008</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>3D printing ; Clay ; Composites ; Computer engineering ; Corrosion ; Corrosion inhibitors ; Deposition ; Dynamic mechanical analysis ; Epoxy ; Epoxy coatings ; Epoxy resins ; Finite element analysis ; Flexural strength ; Formulations ; Gravimetric analysis ; Mechanical properties ; Morphology ; Nanoclay ; Nanocomposites ; Parallel plates ; Polymer matrix composites ; Raw materials ; Rheological properties ; Rheometry ; Stiffness ; Stress analysis ; Thermomechanical properties ; Thermomechanical treatment ; Thermoset ; Three dimensional composites ; Three dimensional printing</subject><ispartof>Composites science and technology, 2018-05, Vol.160, p.9-20</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 26, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-98c96affb81e2cc131a60ca95402d6f41574ed3b08808506c8b09c5a0b04d9313</citedby><cites>FETCH-LOGICAL-c417t-98c96affb81e2cc131a60ca95402d6f41574ed3b08808506c8b09c5a0b04d9313</cites><orcidid>0000-0002-9669-0426 ; 0000-0001-5480-474X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S026635381732849X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hmeidat, Nadim S.</creatorcontrib><creatorcontrib>Kemp, James W.</creatorcontrib><creatorcontrib>Compton, Brett G.</creatorcontrib><title>High-strength epoxy nanocomposites for 3D printing</title><title>Composites science and technology</title><description>Clay-based nanoscale filler materials are commonly used to impart unique and desirable properties to polymer resins. Small volume fractions of nanoclay have disproportionately large effects on stiffness, toughness, strength, and gas barrier properties of polymer matrices due to their high surface-to-volume ratio and platelet morphology. Recent work has suggested that highly loaded epoxy/clay/fiber mixtures possess desirable rheological properties for use as feedstock materials for direct-write 3D printing, but little is known about the effects of the deposition process on the resulting properties of the printed composites. In this work we characterize the effects of a functionalized nanoclay on the rheological properties and printing behavior of an epoxy resin in the absence of fiber reinforcements, and investigate the effects of clay content and the deposition process on the thermo-mechanical properties of the resulting 3D-printed epoxy/clay nanocomposites. The rheological properties of ink formulations containing up to 12.5 wt% nanoclay are measured using parallel plate rheometry, and the thermo-mechanical properties of the printed composites are measured using 3-pt flexural testing, dynamic mechanical analysis, and thermo-gravimetric analysis. Flexural strength values range from 80 MPa to 100 MPa for cast samples and printed samples tested transverse to the printing direction, and up to 143 MPa for printed samples tested parallel to the print direction. Although the observed anisotropic strength values indicate that the deposition process does impart orientation to the nanoclay, the strength in each direction is significantly greater than values reported for 3D printed thermoplastic composites, suggesting that the epoxy/clay system has high potential for further development as a 3D printing feedstock material.</description><subject>3D printing</subject><subject>Clay</subject><subject>Composites</subject><subject>Computer engineering</subject><subject>Corrosion</subject><subject>Corrosion inhibitors</subject><subject>Deposition</subject><subject>Dynamic mechanical analysis</subject><subject>Epoxy</subject><subject>Epoxy coatings</subject><subject>Epoxy resins</subject><subject>Finite element analysis</subject><subject>Flexural strength</subject><subject>Formulations</subject><subject>Gravimetric analysis</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoclay</subject><subject>Nanocomposites</subject><subject>Parallel plates</subject><subject>Polymer matrix composites</subject><subject>Raw materials</subject><subject>Rheological properties</subject><subject>Rheometry</subject><subject>Stiffness</subject><subject>Stress analysis</subject><subject>Thermomechanical properties</subject><subject>Thermomechanical treatment</subject><subject>Thermoset</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAQhi0EEqXwDkHMCWc7duwRFWiRKrHAbCWO0zqidrBdRN8eV2VgZLrl_7-7-xC6xVBhwPx-rLTfTVHbZPS2IoBFBbQCEGdohkUjSwwMztEMCOclZVRcoqsYRwBomCQzRFZ2sy1jCsZt0rYwk_8-FK51_oj1MWNjMfhQ0MdiCtYl6zbX6GJoP6K5-Z1z9P789LZYlevX5cviYV3qGjeplEJL3g5DJ7AhWmOKWw66lawG0vOhxqypTU87EAIEA65FB1KzFjqoe0kxnaO7E3cK_nNvYlKj3weXVyoCDab5AyZzSp5SOvgYgxlUvnPXhoPCoI6K1Kj-KFJHRQqoyopyd3HqmvzGlzVB5ZRx2vQ2GJ1U7-0_KD_eDXR7</recordid><startdate>20180526</startdate><enddate>20180526</enddate><creator>Hmeidat, Nadim S.</creator><creator>Kemp, James W.</creator><creator>Compton, Brett G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9669-0426</orcidid><orcidid>https://orcid.org/0000-0001-5480-474X</orcidid></search><sort><creationdate>20180526</creationdate><title>High-strength epoxy nanocomposites for 3D printing</title><author>Hmeidat, Nadim S. ; Kemp, James W. ; Compton, Brett G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-98c96affb81e2cc131a60ca95402d6f41574ed3b08808506c8b09c5a0b04d9313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Clay</topic><topic>Composites</topic><topic>Computer engineering</topic><topic>Corrosion</topic><topic>Corrosion inhibitors</topic><topic>Deposition</topic><topic>Dynamic mechanical analysis</topic><topic>Epoxy</topic><topic>Epoxy coatings</topic><topic>Epoxy resins</topic><topic>Finite element analysis</topic><topic>Flexural strength</topic><topic>Formulations</topic><topic>Gravimetric analysis</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoclay</topic><topic>Nanocomposites</topic><topic>Parallel plates</topic><topic>Polymer matrix composites</topic><topic>Raw materials</topic><topic>Rheological properties</topic><topic>Rheometry</topic><topic>Stiffness</topic><topic>Stress analysis</topic><topic>Thermomechanical properties</topic><topic>Thermomechanical treatment</topic><topic>Thermoset</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hmeidat, Nadim S.</creatorcontrib><creatorcontrib>Kemp, James W.</creatorcontrib><creatorcontrib>Compton, Brett G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hmeidat, Nadim S.</au><au>Kemp, James W.</au><au>Compton, Brett G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-strength epoxy nanocomposites for 3D printing</atitle><jtitle>Composites science and technology</jtitle><date>2018-05-26</date><risdate>2018</risdate><volume>160</volume><spage>9</spage><epage>20</epage><pages>9-20</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Clay-based nanoscale filler materials are commonly used to impart unique and desirable properties to polymer resins. Small volume fractions of nanoclay have disproportionately large effects on stiffness, toughness, strength, and gas barrier properties of polymer matrices due to their high surface-to-volume ratio and platelet morphology. Recent work has suggested that highly loaded epoxy/clay/fiber mixtures possess desirable rheological properties for use as feedstock materials for direct-write 3D printing, but little is known about the effects of the deposition process on the resulting properties of the printed composites. In this work we characterize the effects of a functionalized nanoclay on the rheological properties and printing behavior of an epoxy resin in the absence of fiber reinforcements, and investigate the effects of clay content and the deposition process on the thermo-mechanical properties of the resulting 3D-printed epoxy/clay nanocomposites. The rheological properties of ink formulations containing up to 12.5 wt% nanoclay are measured using parallel plate rheometry, and the thermo-mechanical properties of the printed composites are measured using 3-pt flexural testing, dynamic mechanical analysis, and thermo-gravimetric analysis. Flexural strength values range from 80 MPa to 100 MPa for cast samples and printed samples tested transverse to the printing direction, and up to 143 MPa for printed samples tested parallel to the print direction. Although the observed anisotropic strength values indicate that the deposition process does impart orientation to the nanoclay, the strength in each direction is significantly greater than values reported for 3D printed thermoplastic composites, suggesting that the epoxy/clay system has high potential for further development as a 3D printing feedstock material.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2018.03.008</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9669-0426</orcidid><orcidid>https://orcid.org/0000-0001-5480-474X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2018-05, Vol.160, p.9-20
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_journals_2071307559
source Elsevier ScienceDirect Journals
subjects 3D printing
Clay
Composites
Computer engineering
Corrosion
Corrosion inhibitors
Deposition
Dynamic mechanical analysis
Epoxy
Epoxy coatings
Epoxy resins
Finite element analysis
Flexural strength
Formulations
Gravimetric analysis
Mechanical properties
Morphology
Nanoclay
Nanocomposites
Parallel plates
Polymer matrix composites
Raw materials
Rheological properties
Rheometry
Stiffness
Stress analysis
Thermomechanical properties
Thermomechanical treatment
Thermoset
Three dimensional composites
Three dimensional printing
title High-strength epoxy nanocomposites for 3D printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-strength%20epoxy%20nanocomposites%20for%203D%20printing&rft.jtitle=Composites%20science%20and%20technology&rft.au=Hmeidat,%20Nadim%20S.&rft.date=2018-05-26&rft.volume=160&rft.spage=9&rft.epage=20&rft.pages=9-20&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2018.03.008&rft_dat=%3Cproquest_cross%3E2071307559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071307559&rft_id=info:pmid/&rft_els_id=S026635381732849X&rfr_iscdi=true