Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures

In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretiza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2018-06, Vol.335, p.298-326
Hauptverfasser: Schillinger, Dominik, Gangwar, Tarun, Gilmanov, Anvar, Heuschele, Jo D., Stolarski, Henryk K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue
container_start_page 298
container_title Computer methods in applied mechanics and engineering
container_volume 335
creator Schillinger, Dominik
Gangwar, Tarun
Gilmanov, Anvar
Heuschele, Jo D.
Stolarski, Henryk K.
description In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure. •We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.
doi_str_mv 10.1016/j.cma.2018.02.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071307269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782518301099</els_id><sourcerecordid>2071307269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLPElRQ_EieBE0K8pEoc4G75sQGXNA62g9Qb_8Af8iW4KmdWI-1hZ3ZGg9ApJQtKqLhYLcxaLRihzYKwjHYPzWhTtwWjvNlHM0LKqqgbVh2ioxhXJE9D2QxtbtcarAWL4xv0Pe7c4BJg6GENQ4qX-Nn3zv58fe_ObkgQlEnOD-c4TqFTBnDvzbsbXs-xGixW49g7o7YMnDx2a_UKhVYxO2jni5jCZNIUIB6jg071EU7-9hy93N2-3DwUy6f7x5vrZWG4aFJRi9pyrRW1ggIjFe_KTnSqoqZRWllhKwqloZyVdUVaDZpD13Jdi9IISxmfo7Pd2zH4jwlikis_hSE7SkZqyknNRJtZdMcywccYoJNjyNHDRlIitwXLlcwFy23BkrCMreZqp4Gc_tNBkNE4GAxYF8Akab37R_0LmdmGMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071307269</pqid></control><display><type>article</type><title>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</title><source>Elsevier ScienceDirect Journals</source><creator>Schillinger, Dominik ; Gangwar, Tarun ; Gilmanov, Anvar ; Heuschele, Jo D. ; Stolarski, Henryk K.</creator><creatorcontrib>Schillinger, Dominik ; Gangwar, Tarun ; Gilmanov, Anvar ; Heuschele, Jo D. ; Stolarski, Henryk K.</creatorcontrib><description>In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure. •We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2018.02.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary value problems ; Discretization ; Embedded shell finite elements ; Embedded systems ; Embedding ; Finite element analysis ; Finite element method ; Lagrange multiplier ; Locking ; Polynomials ; Reduced quadrature ; Rotation-free shell formulation ; Solid–shell interaction ; Stress ; Surface locking ; Surface stability ; Voxel finite elements</subject><ispartof>Computer methods in applied mechanics and engineering, 2018-06, Vol.335, p.298-326</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</citedby><cites>FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</cites><orcidid>0000-0002-9068-6311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782518301099$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Schillinger, Dominik</creatorcontrib><creatorcontrib>Gangwar, Tarun</creatorcontrib><creatorcontrib>Gilmanov, Anvar</creatorcontrib><creatorcontrib>Heuschele, Jo D.</creatorcontrib><creatorcontrib>Stolarski, Henryk K.</creatorcontrib><title>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</title><title>Computer methods in applied mechanics and engineering</title><description>In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure. •We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.</description><subject>Boundary value problems</subject><subject>Discretization</subject><subject>Embedded shell finite elements</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Lagrange multiplier</subject><subject>Locking</subject><subject>Polynomials</subject><subject>Reduced quadrature</subject><subject>Rotation-free shell formulation</subject><subject>Solid–shell interaction</subject><subject>Stress</subject><subject>Surface locking</subject><subject>Surface stability</subject><subject>Voxel finite elements</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLPElRQ_EieBE0K8pEoc4G75sQGXNA62g9Qb_8Af8iW4KmdWI-1hZ3ZGg9ApJQtKqLhYLcxaLRihzYKwjHYPzWhTtwWjvNlHM0LKqqgbVh2ioxhXJE9D2QxtbtcarAWL4xv0Pe7c4BJg6GENQ4qX-Nn3zv58fe_ObkgQlEnOD-c4TqFTBnDvzbsbXs-xGixW49g7o7YMnDx2a_UKhVYxO2jni5jCZNIUIB6jg071EU7-9hy93N2-3DwUy6f7x5vrZWG4aFJRi9pyrRW1ggIjFe_KTnSqoqZRWllhKwqloZyVdUVaDZpD13Jdi9IISxmfo7Pd2zH4jwlikis_hSE7SkZqyknNRJtZdMcywccYoJNjyNHDRlIitwXLlcwFy23BkrCMreZqp4Gc_tNBkNE4GAxYF8Akab37R_0LmdmGMw</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Schillinger, Dominik</creator><creator>Gangwar, Tarun</creator><creator>Gilmanov, Anvar</creator><creator>Heuschele, Jo D.</creator><creator>Stolarski, Henryk K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9068-6311</orcidid></search><sort><creationdate>20180615</creationdate><title>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</title><author>Schillinger, Dominik ; Gangwar, Tarun ; Gilmanov, Anvar ; Heuschele, Jo D. ; Stolarski, Henryk K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary value problems</topic><topic>Discretization</topic><topic>Embedded shell finite elements</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Lagrange multiplier</topic><topic>Locking</topic><topic>Polynomials</topic><topic>Reduced quadrature</topic><topic>Rotation-free shell formulation</topic><topic>Solid–shell interaction</topic><topic>Stress</topic><topic>Surface locking</topic><topic>Surface stability</topic><topic>Voxel finite elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schillinger, Dominik</creatorcontrib><creatorcontrib>Gangwar, Tarun</creatorcontrib><creatorcontrib>Gilmanov, Anvar</creatorcontrib><creatorcontrib>Heuschele, Jo D.</creatorcontrib><creatorcontrib>Stolarski, Henryk K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schillinger, Dominik</au><au>Gangwar, Tarun</au><au>Gilmanov, Anvar</au><au>Heuschele, Jo D.</au><au>Stolarski, Henryk K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>335</volume><spage>298</spage><epage>326</epage><pages>298-326</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure. •We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2018.02.029</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9068-6311</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2018-06, Vol.335, p.298-326
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2071307269
source Elsevier ScienceDirect Journals
subjects Boundary value problems
Discretization
Embedded shell finite elements
Embedded systems
Embedding
Finite element analysis
Finite element method
Lagrange multiplier
Locking
Polynomials
Reduced quadrature
Rotation-free shell formulation
Solid–shell interaction
Stress
Surface locking
Surface stability
Voxel finite elements
title Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20shell%20finite%20elements:%20Solid%E2%80%93shell%20interaction,%20surface%20locking,%20and%20application%20to%20image-based%20bio-structures&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Schillinger,%20Dominik&rft.date=2018-06-15&rft.volume=335&rft.spage=298&rft.epage=326&rft.pages=298-326&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2018.02.029&rft_dat=%3Cproquest_cross%3E2071307269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071307269&rft_id=info:pmid/&rft_els_id=S0045782518301099&rfr_iscdi=true