N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity

[Display omitted] •N-doped 2D-TiO2 nanosheets were synthesized using urea and annealing at 350–500 °C.•Red-shifted absorption edge of N-doped anatase nanosheets monitored in DR spectra.•Nb• and NO species were identified in N-doped anatase structure by EPR spectroscopy.•UV and VIS photoactivity of n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2018-09, Vol.232, p.397-408
Hauptverfasser: Barbieriková, Zuzana, Pližingrová, Eva, Motlochová, Monika, Bezdička, Petr, Boháček, Jaroslav, Dvoranová, Dana, Mazúr, Milan, Kupčík, Jaroslav, Jirkovský, Jaromír, Šubrt, Jan, Krýsa, Josef, Brezová, Vlasta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 408
container_issue
container_start_page 397
container_title Applied catalysis. B, Environmental
container_volume 232
creator Barbieriková, Zuzana
Pližingrová, Eva
Motlochová, Monika
Bezdička, Petr
Boháček, Jaroslav
Dvoranová, Dana
Mazúr, Milan
Kupčík, Jaroslav
Jirkovský, Jaromír
Šubrt, Jan
Krýsa, Josef
Brezová, Vlasta
description [Display omitted] •N-doped 2D-TiO2 nanosheets were synthesized using urea and annealing at 350–500 °C.•Red-shifted absorption edge of N-doped anatase nanosheets monitored in DR spectra.•Nb• and NO species were identified in N-doped anatase structure by EPR spectroscopy.•UV and VIS photoactivity of nanosheets was investigated in the various systems.•N-dopant chemical states significantly affect photocatalytic performance of N-TiO2. A series of nitrogen-doped 2D-titanium dioxide nanosheets was synthesized via green and facile procedure from the lyophilized aqueous colloids of peroxo titanic acid by urea addition and annealing in the temperature range of 350–500 °C. Detailed structural characterization (SEM, TEM with EDX, XRD) of N-doped TiO2 confirmed their 2D-foil morphology composed of packed anatase nanocrystals. CHNS analysis showed that the total nitrogen content in the N-doped TiO2 nanosheets is comparable (0.3 wt. %), and as shown in the EPR measurements in solid state, the annealing temperature determines the character of the nitrogen species incorporated in the anatase lattice. Paramagnetic nitrogen bulk centers (Nb•) dominate the X- and Q-band EPR spectra of the synthesized N-doped TiO2 annealed up to 400 °C, while NO species were detected in samples annealed at higher temperatures. The photoexcitation of the N-doped anatase nanosheets resulted in an intense increase of the Nb• signal intensity, especially upon VIS-light exposure, reflecting the selective photoexcitation of the material via diamagnetic Nb– centers. Nevertheless, the situation upon irradiation of dispersed systems is rather different and to link the information on the structure of the nanosheets with their photoinduced performance in suspensions, the indirect techniques of EPR spectroscopy were applied. Effective generation of paramagnetic reactive oxygen species (ROS) upon UV photoexcitation of the N-doped TiO2 nanopowders dispersed in water or dimethylsulfoxide was confirmed by EPR spin trapping technique. The VIS-light-induced ROS formation was significantly lower and correlates well with the results obtained by the photocatalytic decomposition of 4-chlorophenol upon VIS light. Even though the OH-induced capacity of N-doped TiO2 prevails upon UV exposure, the VIS irradiation evokes the formation of photoelectrons capable of the selective reduction processes as demonstrated by the one-electron reduction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation, where the
doi_str_mv 10.1016/j.apcatb.2018.03.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071305600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337318302522</els_id><sourcerecordid>2071305600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5f9e8ad56d854088169874cb378e8341f93a71404780364dc66c7dd3b13dee4c3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwicSXpOpvELgckVH6lCjhQrsa1t9RVmwTbrShPT6CcOe1qNTOr-Rg75ZBx4NVgkenW6DjNcuAyA8ygxD3W41JgilLiPuvBMK9SRIGH7CiEBQDkmMsee3tMr5uWbBJd1LVbrxLrmk9nKal13YQ5UQwXybOnVnsdXVOfJ2berSaSd1-_l0TXNpm8DjYuuOmS0qV7n8ekU7iNi9tjdjDTy0Anf7PPJrc3L6P7dPx09zC6GqcGBY9pORuS1LasrCwLkJJXQykKM0UhSWLBZ0PUghdQCAlYFdZUlRHW4pSjJSoM9tnZLrf1zceaQlSLZu3r7qXKQXCEsgLoVMVOZXwTgqeZar1bab9VHNQPS7VQO5bqh6UCVB3Lzna5s1HXYOPIq2Ac1Yas82Siso37P-Abzxl_DQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071305600</pqid></control><display><type>article</type><title>N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity</title><source>Elsevier ScienceDirect Journals</source><creator>Barbieriková, Zuzana ; Pližingrová, Eva ; Motlochová, Monika ; Bezdička, Petr ; Boháček, Jaroslav ; Dvoranová, Dana ; Mazúr, Milan ; Kupčík, Jaroslav ; Jirkovský, Jaromír ; Šubrt, Jan ; Krýsa, Josef ; Brezová, Vlasta</creator><creatorcontrib>Barbieriková, Zuzana ; Pližingrová, Eva ; Motlochová, Monika ; Bezdička, Petr ; Boháček, Jaroslav ; Dvoranová, Dana ; Mazúr, Milan ; Kupčík, Jaroslav ; Jirkovský, Jaromír ; Šubrt, Jan ; Krýsa, Josef ; Brezová, Vlasta</creatorcontrib><description>[Display omitted] •N-doped 2D-TiO2 nanosheets were synthesized using urea and annealing at 350–500 °C.•Red-shifted absorption edge of N-doped anatase nanosheets monitored in DR spectra.•Nb• and NO species were identified in N-doped anatase structure by EPR spectroscopy.•UV and VIS photoactivity of nanosheets was investigated in the various systems.•N-dopant chemical states significantly affect photocatalytic performance of N-TiO2. A series of nitrogen-doped 2D-titanium dioxide nanosheets was synthesized via green and facile procedure from the lyophilized aqueous colloids of peroxo titanic acid by urea addition and annealing in the temperature range of 350–500 °C. Detailed structural characterization (SEM, TEM with EDX, XRD) of N-doped TiO2 confirmed their 2D-foil morphology composed of packed anatase nanocrystals. CHNS analysis showed that the total nitrogen content in the N-doped TiO2 nanosheets is comparable (0.3 wt. %), and as shown in the EPR measurements in solid state, the annealing temperature determines the character of the nitrogen species incorporated in the anatase lattice. Paramagnetic nitrogen bulk centers (Nb•) dominate the X- and Q-band EPR spectra of the synthesized N-doped TiO2 annealed up to 400 °C, while NO species were detected in samples annealed at higher temperatures. The photoexcitation of the N-doped anatase nanosheets resulted in an intense increase of the Nb• signal intensity, especially upon VIS-light exposure, reflecting the selective photoexcitation of the material via diamagnetic Nb– centers. Nevertheless, the situation upon irradiation of dispersed systems is rather different and to link the information on the structure of the nanosheets with their photoinduced performance in suspensions, the indirect techniques of EPR spectroscopy were applied. Effective generation of paramagnetic reactive oxygen species (ROS) upon UV photoexcitation of the N-doped TiO2 nanopowders dispersed in water or dimethylsulfoxide was confirmed by EPR spin trapping technique. The VIS-light-induced ROS formation was significantly lower and correlates well with the results obtained by the photocatalytic decomposition of 4-chlorophenol upon VIS light. Even though the OH-induced capacity of N-doped TiO2 prevails upon UV exposure, the VIS irradiation evokes the formation of photoelectrons capable of the selective reduction processes as demonstrated by the one-electron reduction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation, where the form of nitrogen dopant (e. g. the presence of Nb–/Nb•) in the anatase structure showed a clear effect on the reaction rate. The prepared visible-light active N-doped TiO2 nanosheets exhibiting also adequate UV photoactivity represent promising materials for further development of solar-light active photocatalysts.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2018.03.053</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anatase ; Annealing ; Chlorophenol ; Colloids ; Diamagnetism ; Dispersion ; EPR spectroscopy ; Exposure ; Foils ; Irradiation ; Luminous intensity ; Lyophilization ; Morphology ; N-Doped titanium dioxide ; Nanosheets ; Nitrogen ; Photocatalysis ; Photoelectrons ; Photoexcitation ; Radiation ; Reactive oxygen species ; Reduction ; Spectroscopy ; Spectrum analysis ; Spin trapping ; Structural analysis ; Synthesis ; Temperature ; Titanium ; Titanium dioxide ; Ultraviolet radiation ; Urea</subject><ispartof>Applied catalysis. B, Environmental, 2018-09, Vol.232, p.397-408</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5f9e8ad56d854088169874cb378e8341f93a71404780364dc66c7dd3b13dee4c3</citedby><cites>FETCH-LOGICAL-c371t-5f9e8ad56d854088169874cb378e8341f93a71404780364dc66c7dd3b13dee4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337318302522$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Barbieriková, Zuzana</creatorcontrib><creatorcontrib>Pližingrová, Eva</creatorcontrib><creatorcontrib>Motlochová, Monika</creatorcontrib><creatorcontrib>Bezdička, Petr</creatorcontrib><creatorcontrib>Boháček, Jaroslav</creatorcontrib><creatorcontrib>Dvoranová, Dana</creatorcontrib><creatorcontrib>Mazúr, Milan</creatorcontrib><creatorcontrib>Kupčík, Jaroslav</creatorcontrib><creatorcontrib>Jirkovský, Jaromír</creatorcontrib><creatorcontrib>Šubrt, Jan</creatorcontrib><creatorcontrib>Krýsa, Josef</creatorcontrib><creatorcontrib>Brezová, Vlasta</creatorcontrib><title>N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •N-doped 2D-TiO2 nanosheets were synthesized using urea and annealing at 350–500 °C.•Red-shifted absorption edge of N-doped anatase nanosheets monitored in DR spectra.•Nb• and NO species were identified in N-doped anatase structure by EPR spectroscopy.•UV and VIS photoactivity of nanosheets was investigated in the various systems.•N-dopant chemical states significantly affect photocatalytic performance of N-TiO2. A series of nitrogen-doped 2D-titanium dioxide nanosheets was synthesized via green and facile procedure from the lyophilized aqueous colloids of peroxo titanic acid by urea addition and annealing in the temperature range of 350–500 °C. Detailed structural characterization (SEM, TEM with EDX, XRD) of N-doped TiO2 confirmed their 2D-foil morphology composed of packed anatase nanocrystals. CHNS analysis showed that the total nitrogen content in the N-doped TiO2 nanosheets is comparable (0.3 wt. %), and as shown in the EPR measurements in solid state, the annealing temperature determines the character of the nitrogen species incorporated in the anatase lattice. Paramagnetic nitrogen bulk centers (Nb•) dominate the X- and Q-band EPR spectra of the synthesized N-doped TiO2 annealed up to 400 °C, while NO species were detected in samples annealed at higher temperatures. The photoexcitation of the N-doped anatase nanosheets resulted in an intense increase of the Nb• signal intensity, especially upon VIS-light exposure, reflecting the selective photoexcitation of the material via diamagnetic Nb– centers. Nevertheless, the situation upon irradiation of dispersed systems is rather different and to link the information on the structure of the nanosheets with their photoinduced performance in suspensions, the indirect techniques of EPR spectroscopy were applied. Effective generation of paramagnetic reactive oxygen species (ROS) upon UV photoexcitation of the N-doped TiO2 nanopowders dispersed in water or dimethylsulfoxide was confirmed by EPR spin trapping technique. The VIS-light-induced ROS formation was significantly lower and correlates well with the results obtained by the photocatalytic decomposition of 4-chlorophenol upon VIS light. Even though the OH-induced capacity of N-doped TiO2 prevails upon UV exposure, the VIS irradiation evokes the formation of photoelectrons capable of the selective reduction processes as demonstrated by the one-electron reduction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation, where the form of nitrogen dopant (e. g. the presence of Nb–/Nb•) in the anatase structure showed a clear effect on the reaction rate. The prepared visible-light active N-doped TiO2 nanosheets exhibiting also adequate UV photoactivity represent promising materials for further development of solar-light active photocatalysts.</description><subject>Anatase</subject><subject>Annealing</subject><subject>Chlorophenol</subject><subject>Colloids</subject><subject>Diamagnetism</subject><subject>Dispersion</subject><subject>EPR spectroscopy</subject><subject>Exposure</subject><subject>Foils</subject><subject>Irradiation</subject><subject>Luminous intensity</subject><subject>Lyophilization</subject><subject>Morphology</subject><subject>N-Doped titanium dioxide</subject><subject>Nanosheets</subject><subject>Nitrogen</subject><subject>Photocatalysis</subject><subject>Photoelectrons</subject><subject>Photoexcitation</subject><subject>Radiation</subject><subject>Reactive oxygen species</subject><subject>Reduction</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spin trapping</subject><subject>Structural analysis</subject><subject>Synthesis</subject><subject>Temperature</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><subject>Urea</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwicSXpOpvELgckVH6lCjhQrsa1t9RVmwTbrShPT6CcOe1qNTOr-Rg75ZBx4NVgkenW6DjNcuAyA8ygxD3W41JgilLiPuvBMK9SRIGH7CiEBQDkmMsee3tMr5uWbBJd1LVbrxLrmk9nKal13YQ5UQwXybOnVnsdXVOfJ2berSaSd1-_l0TXNpm8DjYuuOmS0qV7n8ekU7iNi9tjdjDTy0Anf7PPJrc3L6P7dPx09zC6GqcGBY9pORuS1LasrCwLkJJXQykKM0UhSWLBZ0PUghdQCAlYFdZUlRHW4pSjJSoM9tnZLrf1zceaQlSLZu3r7qXKQXCEsgLoVMVOZXwTgqeZar1bab9VHNQPS7VQO5bqh6UCVB3Lzna5s1HXYOPIq2Ac1Yas82Siso37P-Abzxl_DQ</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Barbieriková, Zuzana</creator><creator>Pližingrová, Eva</creator><creator>Motlochová, Monika</creator><creator>Bezdička, Petr</creator><creator>Boháček, Jaroslav</creator><creator>Dvoranová, Dana</creator><creator>Mazúr, Milan</creator><creator>Kupčík, Jaroslav</creator><creator>Jirkovský, Jaromír</creator><creator>Šubrt, Jan</creator><creator>Krýsa, Josef</creator><creator>Brezová, Vlasta</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180915</creationdate><title>N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity</title><author>Barbieriková, Zuzana ; Pližingrová, Eva ; Motlochová, Monika ; Bezdička, Petr ; Boháček, Jaroslav ; Dvoranová, Dana ; Mazúr, Milan ; Kupčík, Jaroslav ; Jirkovský, Jaromír ; Šubrt, Jan ; Krýsa, Josef ; Brezová, Vlasta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5f9e8ad56d854088169874cb378e8341f93a71404780364dc66c7dd3b13dee4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anatase</topic><topic>Annealing</topic><topic>Chlorophenol</topic><topic>Colloids</topic><topic>Diamagnetism</topic><topic>Dispersion</topic><topic>EPR spectroscopy</topic><topic>Exposure</topic><topic>Foils</topic><topic>Irradiation</topic><topic>Luminous intensity</topic><topic>Lyophilization</topic><topic>Morphology</topic><topic>N-Doped titanium dioxide</topic><topic>Nanosheets</topic><topic>Nitrogen</topic><topic>Photocatalysis</topic><topic>Photoelectrons</topic><topic>Photoexcitation</topic><topic>Radiation</topic><topic>Reactive oxygen species</topic><topic>Reduction</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spin trapping</topic><topic>Structural analysis</topic><topic>Synthesis</topic><topic>Temperature</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbieriková, Zuzana</creatorcontrib><creatorcontrib>Pližingrová, Eva</creatorcontrib><creatorcontrib>Motlochová, Monika</creatorcontrib><creatorcontrib>Bezdička, Petr</creatorcontrib><creatorcontrib>Boháček, Jaroslav</creatorcontrib><creatorcontrib>Dvoranová, Dana</creatorcontrib><creatorcontrib>Mazúr, Milan</creatorcontrib><creatorcontrib>Kupčík, Jaroslav</creatorcontrib><creatorcontrib>Jirkovský, Jaromír</creatorcontrib><creatorcontrib>Šubrt, Jan</creatorcontrib><creatorcontrib>Krýsa, Josef</creatorcontrib><creatorcontrib>Brezová, Vlasta</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbieriková, Zuzana</au><au>Pližingrová, Eva</au><au>Motlochová, Monika</au><au>Bezdička, Petr</au><au>Boháček, Jaroslav</au><au>Dvoranová, Dana</au><au>Mazúr, Milan</au><au>Kupčík, Jaroslav</au><au>Jirkovský, Jaromír</au><au>Šubrt, Jan</au><au>Krýsa, Josef</au><au>Brezová, Vlasta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2018-09-15</date><risdate>2018</risdate><volume>232</volume><spage>397</spage><epage>408</epage><pages>397-408</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •N-doped 2D-TiO2 nanosheets were synthesized using urea and annealing at 350–500 °C.•Red-shifted absorption edge of N-doped anatase nanosheets monitored in DR spectra.•Nb• and NO species were identified in N-doped anatase structure by EPR spectroscopy.•UV and VIS photoactivity of nanosheets was investigated in the various systems.•N-dopant chemical states significantly affect photocatalytic performance of N-TiO2. A series of nitrogen-doped 2D-titanium dioxide nanosheets was synthesized via green and facile procedure from the lyophilized aqueous colloids of peroxo titanic acid by urea addition and annealing in the temperature range of 350–500 °C. Detailed structural characterization (SEM, TEM with EDX, XRD) of N-doped TiO2 confirmed their 2D-foil morphology composed of packed anatase nanocrystals. CHNS analysis showed that the total nitrogen content in the N-doped TiO2 nanosheets is comparable (0.3 wt. %), and as shown in the EPR measurements in solid state, the annealing temperature determines the character of the nitrogen species incorporated in the anatase lattice. Paramagnetic nitrogen bulk centers (Nb•) dominate the X- and Q-band EPR spectra of the synthesized N-doped TiO2 annealed up to 400 °C, while NO species were detected in samples annealed at higher temperatures. The photoexcitation of the N-doped anatase nanosheets resulted in an intense increase of the Nb• signal intensity, especially upon VIS-light exposure, reflecting the selective photoexcitation of the material via diamagnetic Nb– centers. Nevertheless, the situation upon irradiation of dispersed systems is rather different and to link the information on the structure of the nanosheets with their photoinduced performance in suspensions, the indirect techniques of EPR spectroscopy were applied. Effective generation of paramagnetic reactive oxygen species (ROS) upon UV photoexcitation of the N-doped TiO2 nanopowders dispersed in water or dimethylsulfoxide was confirmed by EPR spin trapping technique. The VIS-light-induced ROS formation was significantly lower and correlates well with the results obtained by the photocatalytic decomposition of 4-chlorophenol upon VIS light. Even though the OH-induced capacity of N-doped TiO2 prevails upon UV exposure, the VIS irradiation evokes the formation of photoelectrons capable of the selective reduction processes as demonstrated by the one-electron reduction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical cation, where the form of nitrogen dopant (e. g. the presence of Nb–/Nb•) in the anatase structure showed a clear effect on the reaction rate. The prepared visible-light active N-doped TiO2 nanosheets exhibiting also adequate UV photoactivity represent promising materials for further development of solar-light active photocatalysts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2018.03.053</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2018-09, Vol.232, p.397-408
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2071305600
source Elsevier ScienceDirect Journals
subjects Anatase
Annealing
Chlorophenol
Colloids
Diamagnetism
Dispersion
EPR spectroscopy
Exposure
Foils
Irradiation
Luminous intensity
Lyophilization
Morphology
N-Doped titanium dioxide
Nanosheets
Nitrogen
Photocatalysis
Photoelectrons
Photoexcitation
Radiation
Reactive oxygen species
Reduction
Spectroscopy
Spectrum analysis
Spin trapping
Structural analysis
Synthesis
Temperature
Titanium
Titanium dioxide
Ultraviolet radiation
Urea
title N-Doped titanium dioxide nanosheets: Preparation, characterization and UV/visible-light activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-Doped%20titanium%20dioxide%20nanosheets:%20Preparation,%20characterization%20and%20UV/visible-light%20activity&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Barbierikov%C3%A1,%20Zuzana&rft.date=2018-09-15&rft.volume=232&rft.spage=397&rft.epage=408&rft.pages=397-408&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2018.03.053&rft_dat=%3Cproquest_cross%3E2071305600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071305600&rft_id=info:pmid/&rft_els_id=S0926337318302522&rfr_iscdi=true