Orthogonally additive polynomials on convolution algebras associated with a compact group

Let \(G\) be a compact group, let \(X\) be a Banach space, and let \(P\colon L^1(G)\to X\) be an orthogonally additive, continuous \(n\)-homogeneous polynomial. Then we show that there exists a unique continuous linear map \(\Phi\colon L^1(G)\to X\) such that \(P(f)=\Phi \bigl(f\ast\stackrel{n}{\cdo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-02
Hauptverfasser: Alaminos, J, Extremera, J, Godoy, M L C, Villena, A R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alaminos, J
Extremera, J
Godoy, M L C
Villena, A R
description Let \(G\) be a compact group, let \(X\) be a Banach space, and let \(P\colon L^1(G)\to X\) be an orthogonally additive, continuous \(n\)-homogeneous polynomial. Then we show that there exists a unique continuous linear map \(\Phi\colon L^1(G)\to X\) such that \(P(f)=\Phi \bigl(f\ast\stackrel{n}{\cdots}\ast f \bigr)\) for each \(f\in L^1(G)\). We also seek analogues of this result about \(L^1(G)\) for various other convolution algebras, including \(L^p(G)\), for \(1< p\le\infty\), and \(C(G)\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071303384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071303384</sourcerecordid><originalsourceid>FETCH-proquest_journals_20713033843</originalsourceid><addsrcrecordid>eNqNjb0OgjAURhsTE4nyDk2cSWoLwm40bi4uTuQKFUpKb-0PhreXwQdwOt9wvpwVSbgQh6zKOd-Q1PuBMcaPJS8KkZDHzYUeOzSg9UyhbVVQk6QW9WxwVKA9RUMbNBPqGNSyQXfy6cBT8B4bBUG29KNCT2HRRgtNoJ3DaHdk_VruMv1xS_aX8_10zazDd5Q-1ANGt3R9zVl5EEyIKhf_WV-t2EOO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071303384</pqid></control><display><type>article</type><title>Orthogonally additive polynomials on convolution algebras associated with a compact group</title><source>Free E- Journals</source><creator>Alaminos, J ; Extremera, J ; Godoy, M L C ; Villena, A R</creator><creatorcontrib>Alaminos, J ; Extremera, J ; Godoy, M L C ; Villena, A R</creatorcontrib><description>Let \(G\) be a compact group, let \(X\) be a Banach space, and let \(P\colon L^1(G)\to X\) be an orthogonally additive, continuous \(n\)-homogeneous polynomial. Then we show that there exists a unique continuous linear map \(\Phi\colon L^1(G)\to X\) such that \(P(f)=\Phi \bigl(f\ast\stackrel{n}{\cdots}\ast f \bigr)\) for each \(f\in L^1(G)\). We also seek analogues of this result about \(L^1(G)\) for various other convolution algebras, including \(L^p(G)\), for \(1&lt; p\le\infty\), and \(C(G)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Colon ; Convolution ; Polynomials</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Alaminos, J</creatorcontrib><creatorcontrib>Extremera, J</creatorcontrib><creatorcontrib>Godoy, M L C</creatorcontrib><creatorcontrib>Villena, A R</creatorcontrib><title>Orthogonally additive polynomials on convolution algebras associated with a compact group</title><title>arXiv.org</title><description>Let \(G\) be a compact group, let \(X\) be a Banach space, and let \(P\colon L^1(G)\to X\) be an orthogonally additive, continuous \(n\)-homogeneous polynomial. Then we show that there exists a unique continuous linear map \(\Phi\colon L^1(G)\to X\) such that \(P(f)=\Phi \bigl(f\ast\stackrel{n}{\cdots}\ast f \bigr)\) for each \(f\in L^1(G)\). We also seek analogues of this result about \(L^1(G)\) for various other convolution algebras, including \(L^p(G)\), for \(1&lt; p\le\infty\), and \(C(G)\).</description><subject>Banach spaces</subject><subject>Colon</subject><subject>Convolution</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjb0OgjAURhsTE4nyDk2cSWoLwm40bi4uTuQKFUpKb-0PhreXwQdwOt9wvpwVSbgQh6zKOd-Q1PuBMcaPJS8KkZDHzYUeOzSg9UyhbVVQk6QW9WxwVKA9RUMbNBPqGNSyQXfy6cBT8B4bBUG29KNCT2HRRgtNoJ3DaHdk_VruMv1xS_aX8_10zazDd5Q-1ANGt3R9zVl5EEyIKhf_WV-t2EOO</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Alaminos, J</creator><creator>Extremera, J</creator><creator>Godoy, M L C</creator><creator>Villena, A R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20180201</creationdate><title>Orthogonally additive polynomials on convolution algebras associated with a compact group</title><author>Alaminos, J ; Extremera, J ; Godoy, M L C ; Villena, A R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20713033843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Banach spaces</topic><topic>Colon</topic><topic>Convolution</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Alaminos, J</creatorcontrib><creatorcontrib>Extremera, J</creatorcontrib><creatorcontrib>Godoy, M L C</creatorcontrib><creatorcontrib>Villena, A R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaminos, J</au><au>Extremera, J</au><au>Godoy, M L C</au><au>Villena, A R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Orthogonally additive polynomials on convolution algebras associated with a compact group</atitle><jtitle>arXiv.org</jtitle><date>2018-02-01</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Let \(G\) be a compact group, let \(X\) be a Banach space, and let \(P\colon L^1(G)\to X\) be an orthogonally additive, continuous \(n\)-homogeneous polynomial. Then we show that there exists a unique continuous linear map \(\Phi\colon L^1(G)\to X\) such that \(P(f)=\Phi \bigl(f\ast\stackrel{n}{\cdots}\ast f \bigr)\) for each \(f\in L^1(G)\). We also seek analogues of this result about \(L^1(G)\) for various other convolution algebras, including \(L^p(G)\), for \(1&lt; p\le\infty\), and \(C(G)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071303384
source Free E- Journals
subjects Banach spaces
Colon
Convolution
Polynomials
title Orthogonally additive polynomials on convolution algebras associated with a compact group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A55%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Orthogonally%20additive%20polynomials%20on%20convolution%20algebras%20associated%20with%20a%20compact%20group&rft.jtitle=arXiv.org&rft.au=Alaminos,%20J&rft.date=2018-02-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071303384%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071303384&rft_id=info:pmid/&rfr_iscdi=true