Generating all 36,864 Four-Color Adinkras via Signed Permutations and Organizing into \(\ell\)- and \(\tilde{\ell}\)-Equivalence Classes
Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of \(BC_3\), the signed permutation group of three elements, and \(BC_4\), the signed permutation...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gates, S James Jr Iga, Kevin Kang, Lucas Korotkikh, Vadim Stiffler, Kory |
description | Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of \(BC_3\), the signed permutation group of three elements, and \(BC_4\), the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via \(BC_4\) boson \(\times\) \(BC_3\) color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the \emph{gadget}, which is used to distinguish adinkras. We~show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of \(BC_3\) and \(BC_4\). We also comment on the importance of the gadget as it relates to separating out dynamics in terms of K\"ahler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal \(BC_4\) non-linear \(\sigma\)-model. |
doi_str_mv | 10.48550/arxiv.1712.07826 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071273171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071273171</sourcerecordid><originalsourceid>FETCH-proquest_journals_20712731713</originalsourceid><addsrcrecordid>eNqNj09LxDAQxYMguOh-AG8DXhRsTZP-u0rZ1ZuCHgvLYMeSNU7cJC2iePdjmxU_gKdh3u_N8J4Qp4XMy7aq5BX6dzPnRVOoXDatqg_EQmldZG2p1JFYhrCVUqq6UVWlF-L7hpg8RsMjoLWg68u2LmHtJp91zjoP14PhF48BZoPwYEamAe7Jv04xXTkOgDzAnR-Rzcf-i-HooD_vydr-IvulaYvGDvS5F7-SutpNZkZL_ETQWQyBwok4fEYbaPk3j8XZevXY3WZv3u0mCnGzTZk4oY2SqVyjU0X9P9cPA7xXyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071273171</pqid></control><display><type>article</type><title>Generating all 36,864 Four-Color Adinkras via Signed Permutations and Organizing into \(\ell\)- and \(\tilde{\ell}\)-Equivalence Classes</title><source>Free E- Journals</source><creator>Gates, S James ; Jr ; Iga, Kevin ; Kang, Lucas ; Korotkikh, Vadim ; Stiffler, Kory</creator><creatorcontrib>Gates, S James ; Jr ; Iga, Kevin ; Kang, Lucas ; Korotkikh, Vadim ; Stiffler, Kory</creatorcontrib><description>Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of \(BC_3\), the signed permutation group of three elements, and \(BC_4\), the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via \(BC_4\) boson \(\times\) \(BC_3\) color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the \emph{gadget}, which is used to distinguish adinkras. We~show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of \(BC_3\) and \(BC_4\). We also comment on the importance of the gadget as it relates to separating out dynamics in terms of K\"ahler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal \(BC_4\) non-linear \(\sigma\)-model.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1712.07826</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bosons ; Color ; Equivalence ; Fermions ; Group theory ; Permutations ; Quaternions</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Gates, S James</creatorcontrib><creatorcontrib>Jr</creatorcontrib><creatorcontrib>Iga, Kevin</creatorcontrib><creatorcontrib>Kang, Lucas</creatorcontrib><creatorcontrib>Korotkikh, Vadim</creatorcontrib><creatorcontrib>Stiffler, Kory</creatorcontrib><title>Generating all 36,864 Four-Color Adinkras via Signed Permutations and Organizing into \(\ell\)- and \(\tilde{\ell}\)-Equivalence Classes</title><title>arXiv.org</title><description>Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of \(BC_3\), the signed permutation group of three elements, and \(BC_4\), the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via \(BC_4\) boson \(\times\) \(BC_3\) color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the \emph{gadget}, which is used to distinguish adinkras. We~show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of \(BC_3\) and \(BC_4\). We also comment on the importance of the gadget as it relates to separating out dynamics in terms of K\"ahler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal \(BC_4\) non-linear \(\sigma\)-model.</description><subject>Bosons</subject><subject>Color</subject><subject>Equivalence</subject><subject>Fermions</subject><subject>Group theory</subject><subject>Permutations</subject><subject>Quaternions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNj09LxDAQxYMguOh-AG8DXhRsTZP-u0rZ1ZuCHgvLYMeSNU7cJC2iePdjmxU_gKdh3u_N8J4Qp4XMy7aq5BX6dzPnRVOoXDatqg_EQmldZG2p1JFYhrCVUqq6UVWlF-L7hpg8RsMjoLWg68u2LmHtJp91zjoP14PhF48BZoPwYEamAe7Jv04xXTkOgDzAnR-Rzcf-i-HooD_vydr-IvulaYvGDvS5F7-SutpNZkZL_ETQWQyBwok4fEYbaPk3j8XZevXY3WZv3u0mCnGzTZk4oY2SqVyjU0X9P9cPA7xXyg</recordid><startdate>20190309</startdate><enddate>20190309</enddate><creator>Gates, S James</creator><creator>Jr</creator><creator>Iga, Kevin</creator><creator>Kang, Lucas</creator><creator>Korotkikh, Vadim</creator><creator>Stiffler, Kory</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190309</creationdate><title>Generating all 36,864 Four-Color Adinkras via Signed Permutations and Organizing into \(\ell\)- and \(\tilde{\ell}\)-Equivalence Classes</title><author>Gates, S James ; Jr ; Iga, Kevin ; Kang, Lucas ; Korotkikh, Vadim ; Stiffler, Kory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20712731713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bosons</topic><topic>Color</topic><topic>Equivalence</topic><topic>Fermions</topic><topic>Group theory</topic><topic>Permutations</topic><topic>Quaternions</topic><toplevel>online_resources</toplevel><creatorcontrib>Gates, S James</creatorcontrib><creatorcontrib>Jr</creatorcontrib><creatorcontrib>Iga, Kevin</creatorcontrib><creatorcontrib>Kang, Lucas</creatorcontrib><creatorcontrib>Korotkikh, Vadim</creatorcontrib><creatorcontrib>Stiffler, Kory</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gates, S James</au><au>Jr</au><au>Iga, Kevin</au><au>Kang, Lucas</au><au>Korotkikh, Vadim</au><au>Stiffler, Kory</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generating all 36,864 Four-Color Adinkras via Signed Permutations and Organizing into \(\ell\)- and \(\tilde{\ell}\)-Equivalence Classes</atitle><jtitle>arXiv.org</jtitle><date>2019-03-09</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Recently, all 1,358,954,496 values of the gadget between the 36,864 adinkras with four colors, four bosons, and four fermions have been computed. In this paper, we further analyze these results in terms of \(BC_3\), the signed permutation group of three elements, and \(BC_4\), the signed permutation group of four elements. It is shown how all 36,864 adinkras can be generated via \(BC_4\) boson \(\times\) \(BC_3\) color transformations of two quaternion adinkras that satisfy the quaternion algebra. An adinkra inner product has been used for some time, known as the \emph{gadget}, which is used to distinguish adinkras. We~show how 96 equivalence classes of adinkras that are based on the gadget emerge in terms of \(BC_3\) and \(BC_4\). We also comment on the importance of the gadget as it relates to separating out dynamics in terms of K\"ahler-like potentials. Thus, on the basis of the complete analysis of the supersymmetrical representations achieved in the preparatory first four sections, the final comprehensive achievement of this work is the construction of the universal \(BC_4\) non-linear \(\sigma\)-model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1712.07826</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071273171 |
source | Free E- Journals |
subjects | Bosons Color Equivalence Fermions Group theory Permutations Quaternions |
title | Generating all 36,864 Four-Color Adinkras via Signed Permutations and Organizing into \(\ell\)- and \(\tilde{\ell}\)-Equivalence Classes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generating%20all%2036,864%20Four-Color%20Adinkras%20via%20Signed%20Permutations%20and%20Organizing%20into%20%5C(%5Cell%5C)-%20and%20%5C(%5Ctilde%7B%5Cell%7D%5C)-Equivalence%20Classes&rft.jtitle=arXiv.org&rft.au=Gates,%20S%20James&rft.date=2019-03-09&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1712.07826&rft_dat=%3Cproquest%3E2071273171%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071273171&rft_id=info:pmid/&rfr_iscdi=true |