A Probabilistic Approach to the Drag-Based Model
The forecast of the time of arrival of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-01 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Napoletano, Gianluca te, Roberta Dario Del Moro Pietropaolo, Ermanno Giovannelli, Luca Berrilli, Francesco |
description | The forecast of the time of arrival of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the time of arrival using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071231763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071231763</sourcerecordid><originalsourceid>FETCH-proquest_journals_20712317633</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcFQIKMpPSkzKzMksLslMVnAsKCjKT0zOUCjJVyjJSFVwKUpM13VKLE5NUfDNT0nN4WFgTUvMKU7lhdLcDMpuriHOHrpAbYWlqcUl8Vn5pUV5QKl4IwNzQyNjQ3MzY2PiVAEA-XsyCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071231763</pqid></control><display><type>article</type><title>A Probabilistic Approach to the Drag-Based Model</title><source>Free E- Journals</source><creator>Napoletano, Gianluca ; te, Roberta ; Dario Del Moro ; Pietropaolo, Ermanno ; Giovannelli, Luca ; Berrilli, Francesco</creator><creatorcontrib>Napoletano, Gianluca ; te, Roberta ; Dario Del Moro ; Pietropaolo, Ermanno ; Giovannelli, Luca ; Berrilli, Francesco</creatorcontrib><description>The forecast of the time of arrival of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the time of arrival using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Coronal mass ejection ; Drag ; Extreme values ; Mathematical models ; Parameter uncertainty ; Solar corona ; Solar system ; Statistical analysis ; Transit time</subject><ispartof>arXiv.org, 2018-01</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Napoletano, Gianluca</creatorcontrib><creatorcontrib>te, Roberta</creatorcontrib><creatorcontrib>Dario Del Moro</creatorcontrib><creatorcontrib>Pietropaolo, Ermanno</creatorcontrib><creatorcontrib>Giovannelli, Luca</creatorcontrib><creatorcontrib>Berrilli, Francesco</creatorcontrib><title>A Probabilistic Approach to the Drag-Based Model</title><title>arXiv.org</title><description>The forecast of the time of arrival of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the time of arrival using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach.</description><subject>Algorithms</subject><subject>Coronal mass ejection</subject><subject>Drag</subject><subject>Extreme values</subject><subject>Mathematical models</subject><subject>Parameter uncertainty</subject><subject>Solar corona</subject><subject>Solar system</subject><subject>Statistical analysis</subject><subject>Transit time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcFQIKMpPSkzKzMksLslMVnAsKCjKT0zOUCjJVyjJSFVwKUpM13VKLE5NUfDNT0nN4WFgTUvMKU7lhdLcDMpuriHOHrpAbYWlqcUl8Vn5pUV5QKl4IwNzQyNjQ3MzY2PiVAEA-XsyCg</recordid><startdate>20180111</startdate><enddate>20180111</enddate><creator>Napoletano, Gianluca</creator><creator>te, Roberta</creator><creator>Dario Del Moro</creator><creator>Pietropaolo, Ermanno</creator><creator>Giovannelli, Luca</creator><creator>Berrilli, Francesco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180111</creationdate><title>A Probabilistic Approach to the Drag-Based Model</title><author>Napoletano, Gianluca ; te, Roberta ; Dario Del Moro ; Pietropaolo, Ermanno ; Giovannelli, Luca ; Berrilli, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20712317633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Coronal mass ejection</topic><topic>Drag</topic><topic>Extreme values</topic><topic>Mathematical models</topic><topic>Parameter uncertainty</topic><topic>Solar corona</topic><topic>Solar system</topic><topic>Statistical analysis</topic><topic>Transit time</topic><toplevel>online_resources</toplevel><creatorcontrib>Napoletano, Gianluca</creatorcontrib><creatorcontrib>te, Roberta</creatorcontrib><creatorcontrib>Dario Del Moro</creatorcontrib><creatorcontrib>Pietropaolo, Ermanno</creatorcontrib><creatorcontrib>Giovannelli, Luca</creatorcontrib><creatorcontrib>Berrilli, Francesco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Napoletano, Gianluca</au><au>te, Roberta</au><au>Dario Del Moro</au><au>Pietropaolo, Ermanno</au><au>Giovannelli, Luca</au><au>Berrilli, Francesco</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Probabilistic Approach to the Drag-Based Model</atitle><jtitle>arXiv.org</jtitle><date>2018-01-11</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The forecast of the time of arrival of a coronal mass ejection (CME) to Earth is of critical importance for our high-technology society and for any future manned exploration of the Solar System. As critical as the forecast accuracy is the knowledge of its precision, i.e. the error associated to the estimate. We propose a statistical approach for the computation of the time of arrival using the drag-based model by introducing the probability distributions, rather than exact values, as input parameters, thus allowing the evaluation of the uncertainty on the forecast. We test this approach using a set of CMEs whose transit times are known, and obtain extremely promising results: the average value of the absolute differences between measure and forecast is 9.1h, and half of these residuals are within the estimated errors. These results suggest that this approach deserves further investigation. We are working to realize a real-time implementation which ingests the outputs of automated CME tracking algorithms as inputs to create a database of events useful for a further validation of the approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071231763 |
source | Free E- Journals |
subjects | Algorithms Coronal mass ejection Drag Extreme values Mathematical models Parameter uncertainty Solar corona Solar system Statistical analysis Transit time |
title | A Probabilistic Approach to the Drag-Based Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Probabilistic%20Approach%20to%20the%20Drag-Based%20Model&rft.jtitle=arXiv.org&rft.au=Napoletano,%20Gianluca&rft.date=2018-01-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071231763%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071231763&rft_id=info:pmid/&rfr_iscdi=true |