A data driven equivariant approach to constrained Gaussian mixture modeling
Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact...
Gespeichert in:
Veröffentlicht in: | Advances in data analysis and classification 2018-06, Vol.12 (2), p.235-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 235 |
container_title | Advances in data analysis and classification |
container_volume | 12 |
creator | Rocci, Roberto Gattone, Stefano Antonio Di Mari, Roberto |
description | Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating
a priori
information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix
Ψ
.
Data-driven choices of the matrix
Ψ
,
when
a priori
information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven
Ψ
are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example. |
doi_str_mv | 10.1007/s11634-016-0279-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071145916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071145916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMRt8jh0nY1VBi6jEArN1_khJ1SatnVTw70kVBBPT3fA-750eQm6B3wPn-iEB5JlkHHLGhS4ZnJEJFLlgKlPq_HeX-pJcpbThPOeSqwl5mVGPHVIf62NoaDj09RFjjU1Hcb-PLboP2rXUtU3qItZN8HSBfUpDgu7qz66Pge5aH7Z1s74mFxVuU7j5mVPy_vT4Nl-y1evieT5bMZepsmOoM6ucdhZASMmFFNoCBm8rp3JlufRFaV2hvRRVKUIGDrFEsFyBKmwmsym5G3uH_w59SJ3ZtH1shpNGcA0gVTnImBIYUy62KcVQmX2sdxi_DHBzcmZGZ2ZwZk7ODAyMGJk0ZJt1iH_N_0PfvvBu7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071145916</pqid></control><display><type>article</type><title>A data driven equivariant approach to constrained Gaussian mixture modeling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rocci, Roberto ; Gattone, Stefano Antonio ; Di Mari, Roberto</creator><creatorcontrib>Rocci, Roberto ; Gattone, Stefano Antonio ; Di Mari, Roberto</creatorcontrib><description>Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating
a priori
information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix
Ψ
.
Data-driven choices of the matrix
Ψ
,
when
a priori
information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven
Ψ
are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example.</description><identifier>ISSN: 1862-5347</identifier><identifier>EISSN: 1862-5355</identifier><identifier>DOI: 10.1007/s11634-016-0279-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Affine transformations ; Chemistry and Earth Sciences ; Computer Science ; Computer simulation ; Constraints ; Covariance matrix ; Data Mining and Knowledge Discovery ; Economics ; Eigenvalues ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Maximum likelihood estimation ; Medicine ; Physics ; Regular Article ; Shrinkage ; Simulation ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Advances in data analysis and classification, 2018-06, Vol.12 (2), p.235-260</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Advances in Data Analysis and Classification is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</citedby><cites>FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</cites><orcidid>0000-0001-5498-009X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11634-016-0279-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11634-016-0279-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rocci, Roberto</creatorcontrib><creatorcontrib>Gattone, Stefano Antonio</creatorcontrib><creatorcontrib>Di Mari, Roberto</creatorcontrib><title>A data driven equivariant approach to constrained Gaussian mixture modeling</title><title>Advances in data analysis and classification</title><addtitle>Adv Data Anal Classif</addtitle><description>Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating
a priori
information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix
Ψ
.
Data-driven choices of the matrix
Ψ
,
when
a priori
information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven
Ψ
are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example.</description><subject>Affine transformations</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Covariance matrix</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimation</subject><subject>Medicine</subject><subject>Physics</subject><subject>Regular Article</subject><subject>Shrinkage</subject><subject>Simulation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>1862-5347</issn><issn>1862-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMRt8jh0nY1VBi6jEArN1_khJ1SatnVTw70kVBBPT3fA-750eQm6B3wPn-iEB5JlkHHLGhS4ZnJEJFLlgKlPq_HeX-pJcpbThPOeSqwl5mVGPHVIf62NoaDj09RFjjU1Hcb-PLboP2rXUtU3qItZN8HSBfUpDgu7qz66Pge5aH7Z1s74mFxVuU7j5mVPy_vT4Nl-y1evieT5bMZepsmOoM6ucdhZASMmFFNoCBm8rp3JlufRFaV2hvRRVKUIGDrFEsFyBKmwmsym5G3uH_w59SJ3ZtH1shpNGcA0gVTnImBIYUy62KcVQmX2sdxi_DHBzcmZGZ2ZwZk7ODAyMGJk0ZJt1iH_N_0PfvvBu7A</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Rocci, Roberto</creator><creator>Gattone, Stefano Antonio</creator><creator>Di Mari, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5498-009X</orcidid></search><sort><creationdate>20180601</creationdate><title>A data driven equivariant approach to constrained Gaussian mixture modeling</title><author>Rocci, Roberto ; Gattone, Stefano Antonio ; Di Mari, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affine transformations</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Covariance matrix</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimation</topic><topic>Medicine</topic><topic>Physics</topic><topic>Regular Article</topic><topic>Shrinkage</topic><topic>Simulation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocci, Roberto</creatorcontrib><creatorcontrib>Gattone, Stefano Antonio</creatorcontrib><creatorcontrib>Di Mari, Roberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advances in data analysis and classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocci, Roberto</au><au>Gattone, Stefano Antonio</au><au>Di Mari, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data driven equivariant approach to constrained Gaussian mixture modeling</atitle><jtitle>Advances in data analysis and classification</jtitle><stitle>Adv Data Anal Classif</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>235</spage><epage>260</epage><pages>235-260</pages><issn>1862-5347</issn><eissn>1862-5355</eissn><abstract>Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating
a priori
information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix
Ψ
.
Data-driven choices of the matrix
Ψ
,
when
a priori
information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven
Ψ
are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11634-016-0279-1</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5498-009X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-5347 |
ispartof | Advances in data analysis and classification, 2018-06, Vol.12 (2), p.235-260 |
issn | 1862-5347 1862-5355 |
language | eng |
recordid | cdi_proquest_journals_2071145916 |
source | SpringerLink Journals - AutoHoldings |
subjects | Affine transformations Chemistry and Earth Sciences Computer Science Computer simulation Constraints Covariance matrix Data Mining and Knowledge Discovery Economics Eigenvalues Finance Health Sciences Humanities Insurance Law Management Mathematics and Statistics Maximum likelihood estimation Medicine Physics Regular Article Shrinkage Simulation Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences |
title | A data driven equivariant approach to constrained Gaussian mixture modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20driven%20equivariant%20approach%20to%20constrained%20Gaussian%20mixture%20modeling&rft.jtitle=Advances%20in%20data%20analysis%20and%20classification&rft.au=Rocci,%20Roberto&rft.date=2018-06-01&rft.volume=12&rft.issue=2&rft.spage=235&rft.epage=260&rft.pages=235-260&rft.issn=1862-5347&rft.eissn=1862-5355&rft_id=info:doi/10.1007/s11634-016-0279-1&rft_dat=%3Cproquest_cross%3E2071145916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071145916&rft_id=info:pmid/&rfr_iscdi=true |