A data driven equivariant approach to constrained Gaussian mixture modeling

Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in data analysis and classification 2018-06, Vol.12 (2), p.235-260
Hauptverfasser: Rocci, Roberto, Gattone, Stefano Antonio, Di Mari, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 235
container_title Advances in data analysis and classification
container_volume 12
creator Rocci, Roberto
Gattone, Stefano Antonio
Di Mari, Roberto
description Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix Ψ . Data-driven choices of the matrix Ψ , when a priori information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven Ψ are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example.
doi_str_mv 10.1007/s11634-016-0279-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071145916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071145916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMRt8jh0nY1VBi6jEArN1_khJ1SatnVTw70kVBBPT3fA-750eQm6B3wPn-iEB5JlkHHLGhS4ZnJEJFLlgKlPq_HeX-pJcpbThPOeSqwl5mVGPHVIf62NoaDj09RFjjU1Hcb-PLboP2rXUtU3qItZN8HSBfUpDgu7qz66Pge5aH7Z1s74mFxVuU7j5mVPy_vT4Nl-y1evieT5bMZepsmOoM6ucdhZASMmFFNoCBm8rp3JlufRFaV2hvRRVKUIGDrFEsFyBKmwmsym5G3uH_w59SJ3ZtH1shpNGcA0gVTnImBIYUy62KcVQmX2sdxi_DHBzcmZGZ2ZwZk7ODAyMGJk0ZJt1iH_N_0PfvvBu7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071145916</pqid></control><display><type>article</type><title>A data driven equivariant approach to constrained Gaussian mixture modeling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rocci, Roberto ; Gattone, Stefano Antonio ; Di Mari, Roberto</creator><creatorcontrib>Rocci, Roberto ; Gattone, Stefano Antonio ; Di Mari, Roberto</creatorcontrib><description>Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix Ψ . Data-driven choices of the matrix Ψ , when a priori information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven Ψ are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example.</description><identifier>ISSN: 1862-5347</identifier><identifier>EISSN: 1862-5355</identifier><identifier>DOI: 10.1007/s11634-016-0279-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Affine transformations ; Chemistry and Earth Sciences ; Computer Science ; Computer simulation ; Constraints ; Covariance matrix ; Data Mining and Knowledge Discovery ; Economics ; Eigenvalues ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Maximum likelihood estimation ; Medicine ; Physics ; Regular Article ; Shrinkage ; Simulation ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Advances in data analysis and classification, 2018-06, Vol.12 (2), p.235-260</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Advances in Data Analysis and Classification is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</citedby><cites>FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</cites><orcidid>0000-0001-5498-009X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11634-016-0279-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11634-016-0279-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rocci, Roberto</creatorcontrib><creatorcontrib>Gattone, Stefano Antonio</creatorcontrib><creatorcontrib>Di Mari, Roberto</creatorcontrib><title>A data driven equivariant approach to constrained Gaussian mixture modeling</title><title>Advances in data analysis and classification</title><addtitle>Adv Data Anal Classif</addtitle><description>Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix Ψ . Data-driven choices of the matrix Ψ , when a priori information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven Ψ are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example.</description><subject>Affine transformations</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Covariance matrix</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Economics</subject><subject>Eigenvalues</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Maximum likelihood estimation</subject><subject>Medicine</subject><subject>Physics</subject><subject>Regular Article</subject><subject>Shrinkage</subject><subject>Simulation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>1862-5347</issn><issn>1862-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMRt8jh0nY1VBi6jEArN1_khJ1SatnVTw70kVBBPT3fA-750eQm6B3wPn-iEB5JlkHHLGhS4ZnJEJFLlgKlPq_HeX-pJcpbThPOeSqwl5mVGPHVIf62NoaDj09RFjjU1Hcb-PLboP2rXUtU3qItZN8HSBfUpDgu7qz66Pge5aH7Z1s74mFxVuU7j5mVPy_vT4Nl-y1evieT5bMZepsmOoM6ucdhZASMmFFNoCBm8rp3JlufRFaV2hvRRVKUIGDrFEsFyBKmwmsym5G3uH_w59SJ3ZtH1shpNGcA0gVTnImBIYUy62KcVQmX2sdxi_DHBzcmZGZ2ZwZk7ODAyMGJk0ZJt1iH_N_0PfvvBu7A</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Rocci, Roberto</creator><creator>Gattone, Stefano Antonio</creator><creator>Di Mari, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5498-009X</orcidid></search><sort><creationdate>20180601</creationdate><title>A data driven equivariant approach to constrained Gaussian mixture modeling</title><author>Rocci, Roberto ; Gattone, Stefano Antonio ; Di Mari, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a73b5c7cb1124402427b1aedbfc565b04d89bc87d42f92e31caa9a1b05158b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affine transformations</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Covariance matrix</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Economics</topic><topic>Eigenvalues</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Maximum likelihood estimation</topic><topic>Medicine</topic><topic>Physics</topic><topic>Regular Article</topic><topic>Shrinkage</topic><topic>Simulation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocci, Roberto</creatorcontrib><creatorcontrib>Gattone, Stefano Antonio</creatorcontrib><creatorcontrib>Di Mari, Roberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advances in data analysis and classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocci, Roberto</au><au>Gattone, Stefano Antonio</au><au>Di Mari, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data driven equivariant approach to constrained Gaussian mixture modeling</atitle><jtitle>Advances in data analysis and classification</jtitle><stitle>Adv Data Anal Classif</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>235</spage><epage>260</epage><pages>235-260</pages><issn>1862-5347</issn><eissn>1862-5355</eissn><abstract>Maximum likelihood estimation of Gaussian mixture models with different class-specific covariance matrices is known to be problematic. This is due to the unboundedness of the likelihood, together with the presence of spurious maximizers. Existing methods to bypass this obstacle are based on the fact that unboundedness is avoided if the eigenvalues of the covariance matrices are bounded away from zero. This can be done imposing some constraints on the covariance matrices, i.e. by incorporating a priori information on the covariance structure of the mixture components. The present work introduces a constrained approach, where the class conditional covariance matrices are shrunk towards a pre-specified target matrix Ψ . Data-driven choices of the matrix Ψ , when a priori information is not available, and the optimal amount of shrinkage are investigated. Then, constraints based on a data-driven Ψ are shown to be equivariant with respect to linear affine transformations, provided that the method used to select the target matrix be also equivariant. The effectiveness of the proposal is evaluated on the basis of a simulation study and an empirical example.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11634-016-0279-1</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5498-009X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-5347
ispartof Advances in data analysis and classification, 2018-06, Vol.12 (2), p.235-260
issn 1862-5347
1862-5355
language eng
recordid cdi_proquest_journals_2071145916
source SpringerLink Journals - AutoHoldings
subjects Affine transformations
Chemistry and Earth Sciences
Computer Science
Computer simulation
Constraints
Covariance matrix
Data Mining and Knowledge Discovery
Economics
Eigenvalues
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics and Statistics
Maximum likelihood estimation
Medicine
Physics
Regular Article
Shrinkage
Simulation
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
title A data driven equivariant approach to constrained Gaussian mixture modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20driven%20equivariant%20approach%20to%20constrained%20Gaussian%20mixture%20modeling&rft.jtitle=Advances%20in%20data%20analysis%20and%20classification&rft.au=Rocci,%20Roberto&rft.date=2018-06-01&rft.volume=12&rft.issue=2&rft.spage=235&rft.epage=260&rft.pages=235-260&rft.issn=1862-5347&rft.eissn=1862-5355&rft_id=info:doi/10.1007/s11634-016-0279-1&rft_dat=%3Cproquest_cross%3E2071145916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071145916&rft_id=info:pmid/&rfr_iscdi=true