On magnetostrophic mean-field solutions of the geodynamo equations. Part 2

A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2018-08, Vol.84 (4), Article 735840402
Hauptverfasser: Roberts, Paul H., Wu, Cheng-Chin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of plasma physics
container_volume 84
creator Roberts, Paul H.
Wu, Cheng-Chin
description A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu & Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts & Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations.
doi_str_mv 10.1017/S0022377818000545
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071094736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377818000545</cupid><sourcerecordid>2071094736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLsB16l3HslMllJ8UqigrsO80qY0mXZmsui_N7EFF-LqLs73nQsHoVsCMwJE3H8AUMqEkEQCQM7zMzQhvCgzIUGco8kYZ2N-ia5i3AwMAyom6G3Z4VatOpd8TMHv1o3BrVNdVjdua3H02z41vovY1zitHV45bw-daj12-179RDP8rkLC9Bpd1Gob3c3pTtHX0-Pn_CVbLJ9f5w-LzLACUmZIobgCUQhpnZYagAAvrVWEUG00dSaXdWE55a50hmihOZMGbM0tyynTbIrujr274Pe9i6na-D50w8uKgiBQcsGKgSJHygQfY3B1tQtNq8KhIlCNk1V_JhscdnJUq0NjV-63-n_rGyLcbT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071094736</pqid></control><display><type>article</type><title>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</title><source>Cambridge University Press Journals Complete</source><creator>Roberts, Paul H. ; Wu, Cheng-Chin</creator><creatorcontrib>Roberts, Paul H. ; Wu, Cheng-Chin</creatorcontrib><description>A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu &amp; Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts &amp; Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377818000545</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>50 Years of Mean Field Electrodynamics ; Computational fluid dynamics ; Computer simulation ; Dynamo theory ; Fluid flow ; Magnetic fields ; Magnetohydrodynamics ; Plasma physics ; Theory ; Viscosity</subject><ispartof>Journal of plasma physics, 2018-08, Vol.84 (4), Article 735840402</ispartof><rights>Cambridge University Press 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</citedby><cites>FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</cites><orcidid>0000-0002-9019-822X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377818000545/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Roberts, Paul H.</creatorcontrib><creatorcontrib>Wu, Cheng-Chin</creatorcontrib><title>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu &amp; Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts &amp; Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations.</description><subject>50 Years of Mean Field Electrodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dynamo theory</subject><subject>Fluid flow</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Plasma physics</subject><subject>Theory</subject><subject>Viscosity</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLw0AUhQdRsFZ_gLsB16l3HslMllJ8UqigrsO80qY0mXZmsui_N7EFF-LqLs73nQsHoVsCMwJE3H8AUMqEkEQCQM7zMzQhvCgzIUGco8kYZ2N-ia5i3AwMAyom6G3Z4VatOpd8TMHv1o3BrVNdVjdua3H02z41vovY1zitHV45bw-daj12-179RDP8rkLC9Bpd1Gob3c3pTtHX0-Pn_CVbLJ9f5w-LzLACUmZIobgCUQhpnZYagAAvrVWEUG00dSaXdWE55a50hmihOZMGbM0tyynTbIrujr274Pe9i6na-D50w8uKgiBQcsGKgSJHygQfY3B1tQtNq8KhIlCNk1V_JhscdnJUq0NjV-63-n_rGyLcbT8</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Roberts, Paul H.</creator><creator>Wu, Cheng-Chin</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9019-822X</orcidid></search><sort><creationdate>201808</creationdate><title>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</title><author>Roberts, Paul H. ; Wu, Cheng-Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>50 Years of Mean Field Electrodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dynamo theory</topic><topic>Fluid flow</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Plasma physics</topic><topic>Theory</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Paul H.</creatorcontrib><creatorcontrib>Wu, Cheng-Chin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, Paul H.</au><au>Wu, Cheng-Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2018-08</date><risdate>2018</risdate><volume>84</volume><issue>4</issue><artnum>735840402</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu &amp; Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts &amp; Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377818000545</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9019-822X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2018-08, Vol.84 (4), Article 735840402
issn 0022-3778
1469-7807
language eng
recordid cdi_proquest_journals_2071094736
source Cambridge University Press Journals Complete
subjects 50 Years of Mean Field Electrodynamics
Computational fluid dynamics
Computer simulation
Dynamo theory
Fluid flow
Magnetic fields
Magnetohydrodynamics
Plasma physics
Theory
Viscosity
title On magnetostrophic mean-field solutions of the geodynamo equations. Part 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20magnetostrophic%20mean-field%20solutions%20of%20the%20geodynamo%20equations.%20Part%202&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Roberts,%20Paul%20H.&rft.date=2018-08&rft.volume=84&rft.issue=4&rft.artnum=735840402&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377818000545&rft_dat=%3Cproquest_cross%3E2071094736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071094736&rft_id=info:pmid/&rft_cupid=10_1017_S0022377818000545&rfr_iscdi=true