On magnetostrophic mean-field solutions of the geodynamo equations. Part 2
A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical techniq...
Gespeichert in:
Veröffentlicht in: | Journal of plasma physics 2018-08, Vol.84 (4), Article 735840402 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of plasma physics |
container_volume | 84 |
creator | Roberts, Paul H. Wu, Cheng-Chin |
description | A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu & Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts & Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations. |
doi_str_mv | 10.1017/S0022377818000545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071094736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377818000545</cupid><sourcerecordid>2071094736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFZ_gLsB16l3HslMllJ8UqigrsO80qY0mXZmsui_N7EFF-LqLs73nQsHoVsCMwJE3H8AUMqEkEQCQM7zMzQhvCgzIUGco8kYZ2N-ia5i3AwMAyom6G3Z4VatOpd8TMHv1o3BrVNdVjdua3H02z41vovY1zitHV45bw-daj12-179RDP8rkLC9Bpd1Gob3c3pTtHX0-Pn_CVbLJ9f5w-LzLACUmZIobgCUQhpnZYagAAvrVWEUG00dSaXdWE55a50hmihOZMGbM0tyynTbIrujr274Pe9i6na-D50w8uKgiBQcsGKgSJHygQfY3B1tQtNq8KhIlCNk1V_JhscdnJUq0NjV-63-n_rGyLcbT8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071094736</pqid></control><display><type>article</type><title>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</title><source>Cambridge University Press Journals Complete</source><creator>Roberts, Paul H. ; Wu, Cheng-Chin</creator><creatorcontrib>Roberts, Paul H. ; Wu, Cheng-Chin</creatorcontrib><description>A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu & Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts & Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377818000545</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>50 Years of Mean Field Electrodynamics ; Computational fluid dynamics ; Computer simulation ; Dynamo theory ; Fluid flow ; Magnetic fields ; Magnetohydrodynamics ; Plasma physics ; Theory ; Viscosity</subject><ispartof>Journal of plasma physics, 2018-08, Vol.84 (4), Article 735840402</ispartof><rights>Cambridge University Press 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</citedby><cites>FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</cites><orcidid>0000-0002-9019-822X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377818000545/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Roberts, Paul H.</creatorcontrib><creatorcontrib>Wu, Cheng-Chin</creatorcontrib><title>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu & Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts & Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations.</description><subject>50 Years of Mean Field Electrodynamics</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dynamo theory</subject><subject>Fluid flow</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Plasma physics</subject><subject>Theory</subject><subject>Viscosity</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLw0AUhQdRsFZ_gLsB16l3HslMllJ8UqigrsO80qY0mXZmsui_N7EFF-LqLs73nQsHoVsCMwJE3H8AUMqEkEQCQM7zMzQhvCgzIUGco8kYZ2N-ia5i3AwMAyom6G3Z4VatOpd8TMHv1o3BrVNdVjdua3H02z41vovY1zitHV45bw-daj12-179RDP8rkLC9Bpd1Gob3c3pTtHX0-Pn_CVbLJ9f5w-LzLACUmZIobgCUQhpnZYagAAvrVWEUG00dSaXdWE55a50hmihOZMGbM0tyynTbIrujr274Pe9i6na-D50w8uKgiBQcsGKgSJHygQfY3B1tQtNq8KhIlCNk1V_JhscdnJUq0NjV-63-n_rGyLcbT8</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Roberts, Paul H.</creator><creator>Wu, Cheng-Chin</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9019-822X</orcidid></search><sort><creationdate>201808</creationdate><title>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</title><author>Roberts, Paul H. ; Wu, Cheng-Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c16a4a07678deb8b001049dda112bcb2ec58f6d424e9ec1b7b438c0df4d3523b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>50 Years of Mean Field Electrodynamics</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dynamo theory</topic><topic>Fluid flow</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Plasma physics</topic><topic>Theory</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Paul H.</creatorcontrib><creatorcontrib>Wu, Cheng-Chin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, Paul H.</au><au>Wu, Cheng-Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On magnetostrophic mean-field solutions of the geodynamo equations. Part 2</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2018-08</date><risdate>2018</risdate><volume>84</volume><issue>4</issue><artnum>735840402</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>A dynamo driven by motions unaffected by viscous forces is termed ‘magnetostrophic’, but cannot be found through today’s numerical simulations, which require substantial viscosity to stabilize solutions of the full magnetohydrodynamic (MHD) dynamo equations. By using an alternative numerical technique, proposed by Taylor (Proc. R. Soc. Lond. A, vol. 274, 1963, pp. 274–283), we recently obtained the first magnetostrophic dynamo solutions ever derived (Wu & Roberts, Geophys. Astrophys. Fluid Dyn., vol. 109, 2014, pp. 84–110). These were axisymmetric and of mean-field type. In an earlier paper (Roberts & Wu, Geophys. Astrophys. Fluid Dyn., vol. 108, 2014, pp. 696–715), we proposed an extension of Taylor’s method. Here we explore its numerical implications, comparing them to the consequences of Taylor’s original proposal. One of the differences between the two approaches is that our modification retains torsional waves but Taylor’s theory does not. A more important difference is that our extension of Taylor’s method is, for reasons presented here, the most general possible that does not suffer from the limitations imposed by viscosity on today’s numerical simulations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377818000545</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9019-822X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3778 |
ispartof | Journal of plasma physics, 2018-08, Vol.84 (4), Article 735840402 |
issn | 0022-3778 1469-7807 |
language | eng |
recordid | cdi_proquest_journals_2071094736 |
source | Cambridge University Press Journals Complete |
subjects | 50 Years of Mean Field Electrodynamics Computational fluid dynamics Computer simulation Dynamo theory Fluid flow Magnetic fields Magnetohydrodynamics Plasma physics Theory Viscosity |
title | On magnetostrophic mean-field solutions of the geodynamo equations. Part 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20magnetostrophic%20mean-field%20solutions%20of%20the%20geodynamo%20equations.%20Part%202&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Roberts,%20Paul%20H.&rft.date=2018-08&rft.volume=84&rft.issue=4&rft.artnum=735840402&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377818000545&rft_dat=%3Cproquest_cross%3E2071094736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071094736&rft_id=info:pmid/&rft_cupid=10_1017_S0022377818000545&rfr_iscdi=true |