Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran

Installation layout of wind turbines plays a prominent role in the design of every wind farm. Thus, the wind farm layout optimization problem is proposed to maximize the total power output with the minimum cost. In this research, Kahrizak region in Tehran province of Iran is selected as a windy regi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy and environmental engineering 2018-12, Vol.9 (4), p.399-411
Hauptverfasser: Khanali, Majid, Ahmadzadegan, Shahrzad, Omid, Mahmoud, Keyhani Nasab, Forough, Chau, Kwok Wing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 4
container_start_page 399
container_title International journal of energy and environmental engineering
container_volume 9
creator Khanali, Majid
Ahmadzadegan, Shahrzad
Omid, Mahmoud
Keyhani Nasab, Forough
Chau, Kwok Wing
description Installation layout of wind turbines plays a prominent role in the design of every wind farm. Thus, the wind farm layout optimization problem is proposed to maximize the total power output with the minimum cost. In this research, Kahrizak region in Tehran province of Iran is selected as a windy region and its real wind speed data are gleaned. Three different scenarios are also considered, with various number of generations and populations for GA parameters, effective distances, and longitude and latitude distances of turbines from each other. Among these scenarios, the best result is obtained for the one in which the longitudinal distance between turbines is greater than the latitudinal distance. By observing the wind rose of Kahrizak region, it is observed that the dominant wind direction of the region is toward the east and south–east. Therefore, by increasing the longitudinal distance of the turbines from each other, the efficiency can be improved and the turbine layout becomes more realistic. In this case, the efficiency rate and normalized cost of turbines are 89.5% and 37.4, respectively, and also 56 turbines are needed. The amounts of efficiency and power output are very convenient for real wind speed data of a region.
doi_str_mv 10.1007/s40095-018-0280-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2071024229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A560875625</galeid><sourcerecordid>A560875625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-295b65f5b8ce0d8042dc25ef1066fc6d7c5e4e448cdba08c670ac19e6ef9d50f3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhisEEmjsB3CLxJWCkzZpepwQH5OQuIwDpyhLnS7Tmo6k5evXk6lInIgPsa33sa03yy4oXFOA6iaWADXPgcocmIT88yg7Y4zTXMiCHaccQOY1FcVpNo9xC-nVdcGYPMten_eD69y38y3Z6a9-HEhvyYfzDbE6dGQYw9p5jGSMB0mLHgdniN61fXDDpovEebLCTdCe7EP_7rzBK7JM5Xl2YvUu4vz3n2Uv93er28f86flhebt4yg2HYshZzdeCW76WBqGRULLGMI6WghDWiKYyHEssS2matQZpRAXa0BoF2rrhYItZdjnNTevfRoyD2vZj8GmlYlBRYCVjdVJdT6pW71A5b_shaJOiwc6Z3qN1qb_gAmTFBeMJoBNgQh9jQKv2wXU6fCkK6uC6mlxXyXV1cF19JoZNTExa32L4O-V_6AdlAIXF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071024229</pqid></control><display><type>article</type><title>Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran</title><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Khanali, Majid ; Ahmadzadegan, Shahrzad ; Omid, Mahmoud ; Keyhani Nasab, Forough ; Chau, Kwok Wing</creator><creatorcontrib>Khanali, Majid ; Ahmadzadegan, Shahrzad ; Omid, Mahmoud ; Keyhani Nasab, Forough ; Chau, Kwok Wing</creatorcontrib><description>Installation layout of wind turbines plays a prominent role in the design of every wind farm. Thus, the wind farm layout optimization problem is proposed to maximize the total power output with the minimum cost. In this research, Kahrizak region in Tehran province of Iran is selected as a windy region and its real wind speed data are gleaned. Three different scenarios are also considered, with various number of generations and populations for GA parameters, effective distances, and longitude and latitude distances of turbines from each other. Among these scenarios, the best result is obtained for the one in which the longitudinal distance between turbines is greater than the latitudinal distance. By observing the wind rose of Kahrizak region, it is observed that the dominant wind direction of the region is toward the east and south–east. Therefore, by increasing the longitudinal distance of the turbines from each other, the efficiency can be improved and the turbine layout becomes more realistic. In this case, the efficiency rate and normalized cost of turbines are 89.5% and 37.4, respectively, and also 56 turbines are needed. The amounts of efficiency and power output are very convenient for real wind speed data of a region.</description><identifier>ISSN: 2008-9163</identifier><identifier>EISSN: 2251-6832</identifier><identifier>DOI: 10.1007/s40095-018-0280-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Buildings and facilities ; Efficiency ; Energy ; Genetic algorithms ; Layouts ; Mathematical models ; Minimum cost ; Optimization ; Original Research ; Power efficiency ; Renewable and Green Energy ; Turbines ; Wind direction ; Wind farms ; Wind power ; Wind power generation ; Wind speed ; Wind turbines</subject><ispartof>International journal of energy and environmental engineering, 2018-12, Vol.9 (4), p.399-411</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>International Journal of Energy and Environmental Engineering is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-295b65f5b8ce0d8042dc25ef1066fc6d7c5e4e448cdba08c670ac19e6ef9d50f3</citedby><cites>FETCH-LOGICAL-c503t-295b65f5b8ce0d8042dc25ef1066fc6d7c5e4e448cdba08c670ac19e6ef9d50f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40095-018-0280-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40095-018-0280-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khanali, Majid</creatorcontrib><creatorcontrib>Ahmadzadegan, Shahrzad</creatorcontrib><creatorcontrib>Omid, Mahmoud</creatorcontrib><creatorcontrib>Keyhani Nasab, Forough</creatorcontrib><creatorcontrib>Chau, Kwok Wing</creatorcontrib><title>Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran</title><title>International journal of energy and environmental engineering</title><addtitle>Int J Energy Environ Eng</addtitle><description>Installation layout of wind turbines plays a prominent role in the design of every wind farm. Thus, the wind farm layout optimization problem is proposed to maximize the total power output with the minimum cost. In this research, Kahrizak region in Tehran province of Iran is selected as a windy region and its real wind speed data are gleaned. Three different scenarios are also considered, with various number of generations and populations for GA parameters, effective distances, and longitude and latitude distances of turbines from each other. Among these scenarios, the best result is obtained for the one in which the longitudinal distance between turbines is greater than the latitudinal distance. By observing the wind rose of Kahrizak region, it is observed that the dominant wind direction of the region is toward the east and south–east. Therefore, by increasing the longitudinal distance of the turbines from each other, the efficiency can be improved and the turbine layout becomes more realistic. In this case, the efficiency rate and normalized cost of turbines are 89.5% and 37.4, respectively, and also 56 turbines are needed. The amounts of efficiency and power output are very convenient for real wind speed data of a region.</description><subject>Buildings and facilities</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Genetic algorithms</subject><subject>Layouts</subject><subject>Mathematical models</subject><subject>Minimum cost</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Power efficiency</subject><subject>Renewable and Green Energy</subject><subject>Turbines</subject><subject>Wind direction</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>2008-9163</issn><issn>2251-6832</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1PwzAMhisEEmjsB3CLxJWCkzZpepwQH5OQuIwDpyhLnS7Tmo6k5evXk6lInIgPsa33sa03yy4oXFOA6iaWADXPgcocmIT88yg7Y4zTXMiCHaccQOY1FcVpNo9xC-nVdcGYPMten_eD69y38y3Z6a9-HEhvyYfzDbE6dGQYw9p5jGSMB0mLHgdniN61fXDDpovEebLCTdCe7EP_7rzBK7JM5Xl2YvUu4vz3n2Uv93er28f86flhebt4yg2HYshZzdeCW76WBqGRULLGMI6WghDWiKYyHEssS2matQZpRAXa0BoF2rrhYItZdjnNTevfRoyD2vZj8GmlYlBRYCVjdVJdT6pW71A5b_shaJOiwc6Z3qN1qb_gAmTFBeMJoBNgQh9jQKv2wXU6fCkK6uC6mlxXyXV1cF19JoZNTExa32L4O-V_6AdlAIXF</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Khanali, Majid</creator><creator>Ahmadzadegan, Shahrzad</creator><creator>Omid, Mahmoud</creator><creator>Keyhani Nasab, Forough</creator><creator>Chau, Kwok Wing</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20181201</creationdate><title>Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran</title><author>Khanali, Majid ; Ahmadzadegan, Shahrzad ; Omid, Mahmoud ; Keyhani Nasab, Forough ; Chau, Kwok Wing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-295b65f5b8ce0d8042dc25ef1066fc6d7c5e4e448cdba08c670ac19e6ef9d50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Buildings and facilities</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Genetic algorithms</topic><topic>Layouts</topic><topic>Mathematical models</topic><topic>Minimum cost</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Power efficiency</topic><topic>Renewable and Green Energy</topic><topic>Turbines</topic><topic>Wind direction</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanali, Majid</creatorcontrib><creatorcontrib>Ahmadzadegan, Shahrzad</creatorcontrib><creatorcontrib>Omid, Mahmoud</creatorcontrib><creatorcontrib>Keyhani Nasab, Forough</creatorcontrib><creatorcontrib>Chau, Kwok Wing</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>International journal of energy and environmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanali, Majid</au><au>Ahmadzadegan, Shahrzad</au><au>Omid, Mahmoud</au><au>Keyhani Nasab, Forough</au><au>Chau, Kwok Wing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran</atitle><jtitle>International journal of energy and environmental engineering</jtitle><stitle>Int J Energy Environ Eng</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>9</volume><issue>4</issue><spage>399</spage><epage>411</epage><pages>399-411</pages><issn>2008-9163</issn><eissn>2251-6832</eissn><abstract>Installation layout of wind turbines plays a prominent role in the design of every wind farm. Thus, the wind farm layout optimization problem is proposed to maximize the total power output with the minimum cost. In this research, Kahrizak region in Tehran province of Iran is selected as a windy region and its real wind speed data are gleaned. Three different scenarios are also considered, with various number of generations and populations for GA parameters, effective distances, and longitude and latitude distances of turbines from each other. Among these scenarios, the best result is obtained for the one in which the longitudinal distance between turbines is greater than the latitudinal distance. By observing the wind rose of Kahrizak region, it is observed that the dominant wind direction of the region is toward the east and south–east. Therefore, by increasing the longitudinal distance of the turbines from each other, the efficiency can be improved and the turbine layout becomes more realistic. In this case, the efficiency rate and normalized cost of turbines are 89.5% and 37.4, respectively, and also 56 turbines are needed. The amounts of efficiency and power output are very convenient for real wind speed data of a region.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40095-018-0280-x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2008-9163
ispartof International journal of energy and environmental engineering, 2018-12, Vol.9 (4), p.399-411
issn 2008-9163
2251-6832
language eng
recordid cdi_proquest_journals_2071024229
source SpringerNature Journals; EZB-FREE-00999 freely available EZB journals
subjects Buildings and facilities
Efficiency
Energy
Genetic algorithms
Layouts
Mathematical models
Minimum cost
Optimization
Original Research
Power efficiency
Renewable and Green Energy
Turbines
Wind direction
Wind farms
Wind power
Wind power generation
Wind speed
Wind turbines
title Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A38%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20layout%20of%20wind%20farm%20turbines%20using%20genetic%20algorithms%20in%20Tehran%20province,%20Iran&rft.jtitle=International%20journal%20of%20energy%20and%20environmental%20engineering&rft.au=Khanali,%20Majid&rft.date=2018-12-01&rft.volume=9&rft.issue=4&rft.spage=399&rft.epage=411&rft.pages=399-411&rft.issn=2008-9163&rft.eissn=2251-6832&rft_id=info:doi/10.1007/s40095-018-0280-x&rft_dat=%3Cgale_proqu%3EA560875625%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071024229&rft_id=info:pmid/&rft_galeid=A560875625&rfr_iscdi=true