Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and Monte Carlo simulations

Multilayer growth of an immiscible material system is an example of a self-ordering process which results in nanostructures of various patterns. PbTe and CdTe produce an excellent example of an immiscible material system because, despite having nearly the same lattice constants, both components crys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2018-05, Vol.747, p.809-814
Hauptverfasser: Mińkowski, Marcin, Załuska–Kotur, Magdalena A., Kret, Sławomir, Chusnutdinow, Sergij, Schreyeck, Steffen, Brunner, Karl, Molenkamp, Laurens W., Karczewski, Grzegorz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue
container_start_page 809
container_title Journal of alloys and compounds
container_volume 747
creator Mińkowski, Marcin
Załuska–Kotur, Magdalena A.
Kret, Sławomir
Chusnutdinow, Sergij
Schreyeck, Steffen
Brunner, Karl
Molenkamp, Laurens W.
Karczewski, Grzegorz
description Multilayer growth of an immiscible material system is an example of a self-ordering process which results in nanostructures of various patterns. PbTe and CdTe produce an excellent example of an immiscible material system because, despite having nearly the same lattice constants, both components crystallize in different crystal structures - rock salt and zinc blende - respectively. In this report we adjust the kinetic Monte Carlo (kMC) model proposed in our previous publication [1] to the case of PbTe/CdTe multilayer structures formed of ultra-thin PbTe and CdTe layers. The morphology of the multilayers is revealed by transmission electron microscopy (TEM) and the morphological patterns are simulated using the kMC model, which takes into account bulk and surface diffusion. An important factor which determines the morphology of the PbTe/CdTe superlattices is a significant anisotropy of both the surface and the bulk diffusion. The simulations show that the shape, size and dimensionality of the emerging nanostructures strongly depend on the amount of deposited components and the growth rate. Since the amount of the deposited material plays an important role, the desorption process from the surface has to be considered. Our kMC model with adjusted parameters correctly reproduces all morphological details observed in real PbTe/CdTe nanostructures grown with different growth rates and composition ratios. Finally, we show that the growth rate may be used to control morphological transitions between different types of structures of given compositions. •Epitaxial thin-layer crystal growth of PbTe/CdTe immiscible system is performed.•The growth results in anisotropic structures such as nanowires and quantum dots.•The experimental results are reproduced by a kinetic Monte Carlo model.•The model allows us to predict structures that emerge under different conditions.
doi_str_mv 10.1016/j.jallcom.2018.03.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070927908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092583881830940X</els_id><sourcerecordid>2070927908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dd03fc2e41dc923725629084a98deb27171fcfad7a3515be4d15ece6f5e2e703</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKs_QQi4njGPzmTGjUipD6go2H1IkzuSYZrUJCPWX29q3bu6m3O-y_kQuqSkpITW133Zq2HQflMyQpuS8JKI9ghNaCN4Mavr9hhNSMuqouFNc4rOYuwJIbTldIK2bzB0hQ_vytlvlax3eBu8hhixdViHXUyZbR3g1_UKrudmBXgzDskOagcBxxRGncYA8QYvvrYQ7AZcwsoZ_OxdAjxXYfA42tz5pcdzdNKpIcLF352i1f1iNX8sli8PT_O7ZaE5F6kwhvBOM5hRo1vGBatq1pJmptrGwJoJKminO2WE4hWt1jAztAINdVcBA0H4FF0dsHnNxwgxyd6PweWPkhGRbYhMy6nqkNLBxxigk9u8QIWdpETu3cpe_rmVe7eScJnd5t7toQd5waeFIKO24DQYG0Anabz9h_ADRFOH3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070927908</pqid></control><display><type>article</type><title>Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and Monte Carlo simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mińkowski, Marcin ; Załuska–Kotur, Magdalena A. ; Kret, Sławomir ; Chusnutdinow, Sergij ; Schreyeck, Steffen ; Brunner, Karl ; Molenkamp, Laurens W. ; Karczewski, Grzegorz</creator><creatorcontrib>Mińkowski, Marcin ; Załuska–Kotur, Magdalena A. ; Kret, Sławomir ; Chusnutdinow, Sergij ; Schreyeck, Steffen ; Brunner, Karl ; Molenkamp, Laurens W. ; Karczewski, Grzegorz</creatorcontrib><description>Multilayer growth of an immiscible material system is an example of a self-ordering process which results in nanostructures of various patterns. PbTe and CdTe produce an excellent example of an immiscible material system because, despite having nearly the same lattice constants, both components crystallize in different crystal structures - rock salt and zinc blende - respectively. In this report we adjust the kinetic Monte Carlo (kMC) model proposed in our previous publication [1] to the case of PbTe/CdTe multilayer structures formed of ultra-thin PbTe and CdTe layers. The morphology of the multilayers is revealed by transmission electron microscopy (TEM) and the morphological patterns are simulated using the kMC model, which takes into account bulk and surface diffusion. An important factor which determines the morphology of the PbTe/CdTe superlattices is a significant anisotropy of both the surface and the bulk diffusion. The simulations show that the shape, size and dimensionality of the emerging nanostructures strongly depend on the amount of deposited components and the growth rate. Since the amount of the deposited material plays an important role, the desorption process from the surface has to be considered. Our kMC model with adjusted parameters correctly reproduces all morphological details observed in real PbTe/CdTe nanostructures grown with different growth rates and composition ratios. Finally, we show that the growth rate may be used to control morphological transitions between different types of structures of given compositions. •Epitaxial thin-layer crystal growth of PbTe/CdTe immiscible system is performed.•The growth results in anisotropic structures such as nanowires and quantum dots.•The experimental results are reproduced by a kinetic Monte Carlo model.•The model allows us to predict structures that emerge under different conditions.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.03.079</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anisotropy ; Composition ; Computer simulation ; Crystal lattices ; Crystal structure ; Crystallization ; Halites ; Intermetallic compounds ; Lattice parameters ; Miscibility ; Monte Carlo simulation ; Morphology ; Multilayers ; Nanostructure ; Nanostructured materials ; Superlattices ; Surface diffusion ; Thin films ; Transmission electron microscopy ; Zincblende</subject><ispartof>Journal of alloys and compounds, 2018-05, Vol.747, p.809-814</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 30, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dd03fc2e41dc923725629084a98deb27171fcfad7a3515be4d15ece6f5e2e703</citedby><cites>FETCH-LOGICAL-c337t-dd03fc2e41dc923725629084a98deb27171fcfad7a3515be4d15ece6f5e2e703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2018.03.079$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska–Kotur, Magdalena A.</creatorcontrib><creatorcontrib>Kret, Sławomir</creatorcontrib><creatorcontrib>Chusnutdinow, Sergij</creatorcontrib><creatorcontrib>Schreyeck, Steffen</creatorcontrib><creatorcontrib>Brunner, Karl</creatorcontrib><creatorcontrib>Molenkamp, Laurens W.</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><title>Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and Monte Carlo simulations</title><title>Journal of alloys and compounds</title><description>Multilayer growth of an immiscible material system is an example of a self-ordering process which results in nanostructures of various patterns. PbTe and CdTe produce an excellent example of an immiscible material system because, despite having nearly the same lattice constants, both components crystallize in different crystal structures - rock salt and zinc blende - respectively. In this report we adjust the kinetic Monte Carlo (kMC) model proposed in our previous publication [1] to the case of PbTe/CdTe multilayer structures formed of ultra-thin PbTe and CdTe layers. The morphology of the multilayers is revealed by transmission electron microscopy (TEM) and the morphological patterns are simulated using the kMC model, which takes into account bulk and surface diffusion. An important factor which determines the morphology of the PbTe/CdTe superlattices is a significant anisotropy of both the surface and the bulk diffusion. The simulations show that the shape, size and dimensionality of the emerging nanostructures strongly depend on the amount of deposited components and the growth rate. Since the amount of the deposited material plays an important role, the desorption process from the surface has to be considered. Our kMC model with adjusted parameters correctly reproduces all morphological details observed in real PbTe/CdTe nanostructures grown with different growth rates and composition ratios. Finally, we show that the growth rate may be used to control morphological transitions between different types of structures of given compositions. •Epitaxial thin-layer crystal growth of PbTe/CdTe immiscible system is performed.•The growth results in anisotropic structures such as nanowires and quantum dots.•The experimental results are reproduced by a kinetic Monte Carlo model.•The model allows us to predict structures that emerge under different conditions.</description><subject>Anisotropy</subject><subject>Composition</subject><subject>Computer simulation</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Halites</subject><subject>Intermetallic compounds</subject><subject>Lattice parameters</subject><subject>Miscibility</subject><subject>Monte Carlo simulation</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>Superlattices</subject><subject>Surface diffusion</subject><subject>Thin films</subject><subject>Transmission electron microscopy</subject><subject>Zincblende</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKs_QQi4njGPzmTGjUipD6go2H1IkzuSYZrUJCPWX29q3bu6m3O-y_kQuqSkpITW133Zq2HQflMyQpuS8JKI9ghNaCN4Mavr9hhNSMuqouFNc4rOYuwJIbTldIK2bzB0hQ_vytlvlax3eBu8hhixdViHXUyZbR3g1_UKrudmBXgzDskOagcBxxRGncYA8QYvvrYQ7AZcwsoZ_OxdAjxXYfA42tz5pcdzdNKpIcLF352i1f1iNX8sli8PT_O7ZaE5F6kwhvBOM5hRo1vGBatq1pJmptrGwJoJKminO2WE4hWt1jAztAINdVcBA0H4FF0dsHnNxwgxyd6PweWPkhGRbYhMy6nqkNLBxxigk9u8QIWdpETu3cpe_rmVe7eScJnd5t7toQd5waeFIKO24DQYG0Anabz9h_ADRFOH3w</recordid><startdate>20180530</startdate><enddate>20180530</enddate><creator>Mińkowski, Marcin</creator><creator>Załuska–Kotur, Magdalena A.</creator><creator>Kret, Sławomir</creator><creator>Chusnutdinow, Sergij</creator><creator>Schreyeck, Steffen</creator><creator>Brunner, Karl</creator><creator>Molenkamp, Laurens W.</creator><creator>Karczewski, Grzegorz</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180530</creationdate><title>Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and Monte Carlo simulations</title><author>Mińkowski, Marcin ; Załuska–Kotur, Magdalena A. ; Kret, Sławomir ; Chusnutdinow, Sergij ; Schreyeck, Steffen ; Brunner, Karl ; Molenkamp, Laurens W. ; Karczewski, Grzegorz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dd03fc2e41dc923725629084a98deb27171fcfad7a3515be4d15ece6f5e2e703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Composition</topic><topic>Computer simulation</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Halites</topic><topic>Intermetallic compounds</topic><topic>Lattice parameters</topic><topic>Miscibility</topic><topic>Monte Carlo simulation</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>Superlattices</topic><topic>Surface diffusion</topic><topic>Thin films</topic><topic>Transmission electron microscopy</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mińkowski, Marcin</creatorcontrib><creatorcontrib>Załuska–Kotur, Magdalena A.</creatorcontrib><creatorcontrib>Kret, Sławomir</creatorcontrib><creatorcontrib>Chusnutdinow, Sergij</creatorcontrib><creatorcontrib>Schreyeck, Steffen</creatorcontrib><creatorcontrib>Brunner, Karl</creatorcontrib><creatorcontrib>Molenkamp, Laurens W.</creatorcontrib><creatorcontrib>Karczewski, Grzegorz</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mińkowski, Marcin</au><au>Załuska–Kotur, Magdalena A.</au><au>Kret, Sławomir</au><au>Chusnutdinow, Sergij</au><au>Schreyeck, Steffen</au><au>Brunner, Karl</au><au>Molenkamp, Laurens W.</au><au>Karczewski, Grzegorz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and Monte Carlo simulations</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-05-30</date><risdate>2018</risdate><volume>747</volume><spage>809</spage><epage>814</epage><pages>809-814</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Multilayer growth of an immiscible material system is an example of a self-ordering process which results in nanostructures of various patterns. PbTe and CdTe produce an excellent example of an immiscible material system because, despite having nearly the same lattice constants, both components crystallize in different crystal structures - rock salt and zinc blende - respectively. In this report we adjust the kinetic Monte Carlo (kMC) model proposed in our previous publication [1] to the case of PbTe/CdTe multilayer structures formed of ultra-thin PbTe and CdTe layers. The morphology of the multilayers is revealed by transmission electron microscopy (TEM) and the morphological patterns are simulated using the kMC model, which takes into account bulk and surface diffusion. An important factor which determines the morphology of the PbTe/CdTe superlattices is a significant anisotropy of both the surface and the bulk diffusion. The simulations show that the shape, size and dimensionality of the emerging nanostructures strongly depend on the amount of deposited components and the growth rate. Since the amount of the deposited material plays an important role, the desorption process from the surface has to be considered. Our kMC model with adjusted parameters correctly reproduces all morphological details observed in real PbTe/CdTe nanostructures grown with different growth rates and composition ratios. Finally, we show that the growth rate may be used to control morphological transitions between different types of structures of given compositions. •Epitaxial thin-layer crystal growth of PbTe/CdTe immiscible system is performed.•The growth results in anisotropic structures such as nanowires and quantum dots.•The experimental results are reproduced by a kinetic Monte Carlo model.•The model allows us to predict structures that emerge under different conditions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.03.079</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2018-05, Vol.747, p.809-814
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2070927908
source Access via ScienceDirect (Elsevier)
subjects Anisotropy
Composition
Computer simulation
Crystal lattices
Crystal structure
Crystallization
Halites
Intermetallic compounds
Lattice parameters
Miscibility
Monte Carlo simulation
Morphology
Multilayers
Nanostructure
Nanostructured materials
Superlattices
Surface diffusion
Thin films
Transmission electron microscopy
Zincblende
title Self-organization process in crystalline PbTe/CdTe multilayer structures: Experiment and Monte Carlo simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-organization%20process%20in%20crystalline%20PbTe/CdTe%20multilayer%20structures:%20Experiment%20and%20Monte%20Carlo%20simulations&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Mi%C5%84kowski,%20Marcin&rft.date=2018-05-30&rft.volume=747&rft.spage=809&rft.epage=814&rft.pages=809-814&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.03.079&rft_dat=%3Cproquest_cross%3E2070927908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070927908&rft_id=info:pmid/&rft_els_id=S092583881830940X&rfr_iscdi=true