Synchronization of uncertain hybrid switching and impulsive complex networks

•Hybrid switches and impulses are characterized by dwell-time constraint.•Dwell-time partitioning and convex combination techniques are used.•Results unify synchronizing and desynchronizing impulses.•Unsynchronized networks can be synchronized by desynchronizing impulses. This paper considers the as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling 2018-07, Vol.59, p.379-392
Hauptverfasser: Yang, Xinsong, Lu, Jianquan, Ho, Daniel W.C., Song, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 392
container_issue
container_start_page 379
container_title Applied Mathematical Modelling
container_volume 59
creator Yang, Xinsong
Lu, Jianquan
Ho, Daniel W.C.
Song, Qiang
description •Hybrid switches and impulses are characterized by dwell-time constraint.•Dwell-time partitioning and convex combination techniques are used.•Results unify synchronizing and desynchronizing impulses.•Unsynchronized networks can be synchronized by desynchronizing impulses. This paper considers the asymptotic synchronization problem for a class of uncertain complex networks (CNs) with hybrid switching and impulsive effects. The switches and impulses occur by following a time sequence which is characterized by dwell-time constraint. By designing Lyapunov function with time-varying matrix parameter, two general synchronization criteria formulated by matrix inequalities are first given, which unify synchronizing and desynchronizing impulses. Then specific conditions in terms of linear matrix inequalities (LMIs) are given by partitioning the dwell time and using convex combination technique. Compared with those criteria which are only applicable to pure synchronizing impulses or pure desynchronizing impulses, our results are more practical. It is shown that the switched impulsive CNs (SICNs) can be synchronized by desynchronizing impulses even though CNs without impulse are unsynchronized. Numerical examples are given to show the effectiveness of our new results.
doi_str_mv 10.1016/j.apm.2018.01.046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070923222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X18300593</els_id><sourcerecordid>2070923222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-fc6e674a2040a69d2b4b7ddddd774247701d380e86ed7245aae6833a09282c9e3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdgsMSecHddOxIQq_kmVGACJzXIdhzo0drATSvn0uCoDE7fcnfTevdMPoXMCOQHCL9tc9V1OgZQ5kBwYP0ATKEBkFbDXwz_zMTqJsQWAWdomaPG0dXoVvLPfarDeYd_g0WkTBmUdXm2XwdY4buygV9a9YeVqbLt-XEf7abD2Xb82X9iZYePDezxFR41aR3P226fo5fbmeX6fLR7vHubXi0wXvByyRnPDBVMUGChe1XTJlqLelRCMMiGA1EUJpuSmFpTNlDK8LAoFFS2prkwxRRf7u33wH6OJg2z9GFyKlBREkhWU0qQie5UOPsZgGtkH26mwlQTkDppsZYImd9AkEJmgJc_V3mPS-5_WBBm1NYlHbYPRg6y9_cf9A7w4dbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070923222</pqid></control><display><type>article</type><title>Synchronization of uncertain hybrid switching and impulsive complex networks</title><source>Education Source (EBSCOhost)</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EBSCOhost Business Source Complete</source><creator>Yang, Xinsong ; Lu, Jianquan ; Ho, Daniel W.C. ; Song, Qiang</creator><creatorcontrib>Yang, Xinsong ; Lu, Jianquan ; Ho, Daniel W.C. ; Song, Qiang</creatorcontrib><description>•Hybrid switches and impulses are characterized by dwell-time constraint.•Dwell-time partitioning and convex combination techniques are used.•Results unify synchronizing and desynchronizing impulses.•Unsynchronized networks can be synchronized by desynchronizing impulses. This paper considers the asymptotic synchronization problem for a class of uncertain complex networks (CNs) with hybrid switching and impulsive effects. The switches and impulses occur by following a time sequence which is characterized by dwell-time constraint. By designing Lyapunov function with time-varying matrix parameter, two general synchronization criteria formulated by matrix inequalities are first given, which unify synchronizing and desynchronizing impulses. Then specific conditions in terms of linear matrix inequalities (LMIs) are given by partitioning the dwell time and using convex combination technique. Compared with those criteria which are only applicable to pure synchronizing impulses or pure desynchronizing impulses, our results are more practical. It is shown that the switched impulsive CNs (SICNs) can be synchronized by desynchronizing impulses even though CNs without impulse are unsynchronized. Numerical examples are given to show the effectiveness of our new results.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2018.01.046</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Algorithms ; Complex networks ; Complexity theory ; Computational physics ; Dwell time ; Impulses ; Impulsivity ; Liapunov functions ; Linear matrix inequalities ; Mathematical models ; Matrix methods ; Switches ; Switching ; Switching theory ; Synchronism ; Synchronization ; Time synchronization</subject><ispartof>Applied Mathematical Modelling, 2018-07, Vol.59, p.379-392</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-fc6e674a2040a69d2b4b7ddddd774247701d380e86ed7245aae6833a09282c9e3</citedby><cites>FETCH-LOGICAL-c368t-fc6e674a2040a69d2b4b7ddddd774247701d380e86ed7245aae6833a09282c9e3</cites><orcidid>0000-0003-4423-6034 ; 0000-0003-3599-5020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X18300593$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yang, Xinsong</creatorcontrib><creatorcontrib>Lu, Jianquan</creatorcontrib><creatorcontrib>Ho, Daniel W.C.</creatorcontrib><creatorcontrib>Song, Qiang</creatorcontrib><title>Synchronization of uncertain hybrid switching and impulsive complex networks</title><title>Applied Mathematical Modelling</title><description>•Hybrid switches and impulses are characterized by dwell-time constraint.•Dwell-time partitioning and convex combination techniques are used.•Results unify synchronizing and desynchronizing impulses.•Unsynchronized networks can be synchronized by desynchronizing impulses. This paper considers the asymptotic synchronization problem for a class of uncertain complex networks (CNs) with hybrid switching and impulsive effects. The switches and impulses occur by following a time sequence which is characterized by dwell-time constraint. By designing Lyapunov function with time-varying matrix parameter, two general synchronization criteria formulated by matrix inequalities are first given, which unify synchronizing and desynchronizing impulses. Then specific conditions in terms of linear matrix inequalities (LMIs) are given by partitioning the dwell time and using convex combination technique. Compared with those criteria which are only applicable to pure synchronizing impulses or pure desynchronizing impulses, our results are more practical. It is shown that the switched impulsive CNs (SICNs) can be synchronized by desynchronizing impulses even though CNs without impulse are unsynchronized. Numerical examples are given to show the effectiveness of our new results.</description><subject>Algorithms</subject><subject>Complex networks</subject><subject>Complexity theory</subject><subject>Computational physics</subject><subject>Dwell time</subject><subject>Impulses</subject><subject>Impulsivity</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Mathematical models</subject><subject>Matrix methods</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching theory</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Time synchronization</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdgsMSecHddOxIQq_kmVGACJzXIdhzo0drATSvn0uCoDE7fcnfTevdMPoXMCOQHCL9tc9V1OgZQ5kBwYP0ATKEBkFbDXwz_zMTqJsQWAWdomaPG0dXoVvLPfarDeYd_g0WkTBmUdXm2XwdY4buygV9a9YeVqbLt-XEf7abD2Xb82X9iZYePDezxFR41aR3P226fo5fbmeX6fLR7vHubXi0wXvByyRnPDBVMUGChe1XTJlqLelRCMMiGA1EUJpuSmFpTNlDK8LAoFFS2prkwxRRf7u33wH6OJg2z9GFyKlBREkhWU0qQie5UOPsZgGtkH26mwlQTkDppsZYImd9AkEJmgJc_V3mPS-5_WBBm1NYlHbYPRg6y9_cf9A7w4dbQ</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Yang, Xinsong</creator><creator>Lu, Jianquan</creator><creator>Ho, Daniel W.C.</creator><creator>Song, Qiang</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4423-6034</orcidid><orcidid>https://orcid.org/0000-0003-3599-5020</orcidid></search><sort><creationdate>201807</creationdate><title>Synchronization of uncertain hybrid switching and impulsive complex networks</title><author>Yang, Xinsong ; Lu, Jianquan ; Ho, Daniel W.C. ; Song, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-fc6e674a2040a69d2b4b7ddddd774247701d380e86ed7245aae6833a09282c9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Complex networks</topic><topic>Complexity theory</topic><topic>Computational physics</topic><topic>Dwell time</topic><topic>Impulses</topic><topic>Impulsivity</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Mathematical models</topic><topic>Matrix methods</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching theory</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Time synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xinsong</creatorcontrib><creatorcontrib>Lu, Jianquan</creatorcontrib><creatorcontrib>Ho, Daniel W.C.</creatorcontrib><creatorcontrib>Song, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xinsong</au><au>Lu, Jianquan</au><au>Ho, Daniel W.C.</au><au>Song, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization of uncertain hybrid switching and impulsive complex networks</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2018-07</date><risdate>2018</risdate><volume>59</volume><spage>379</spage><epage>392</epage><pages>379-392</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>•Hybrid switches and impulses are characterized by dwell-time constraint.•Dwell-time partitioning and convex combination techniques are used.•Results unify synchronizing and desynchronizing impulses.•Unsynchronized networks can be synchronized by desynchronizing impulses. This paper considers the asymptotic synchronization problem for a class of uncertain complex networks (CNs) with hybrid switching and impulsive effects. The switches and impulses occur by following a time sequence which is characterized by dwell-time constraint. By designing Lyapunov function with time-varying matrix parameter, two general synchronization criteria formulated by matrix inequalities are first given, which unify synchronizing and desynchronizing impulses. Then specific conditions in terms of linear matrix inequalities (LMIs) are given by partitioning the dwell time and using convex combination technique. Compared with those criteria which are only applicable to pure synchronizing impulses or pure desynchronizing impulses, our results are more practical. It is shown that the switched impulsive CNs (SICNs) can be synchronized by desynchronizing impulses even though CNs without impulse are unsynchronized. Numerical examples are given to show the effectiveness of our new results.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2018.01.046</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4423-6034</orcidid><orcidid>https://orcid.org/0000-0003-3599-5020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2018-07, Vol.59, p.379-392
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_2070923222
source Education Source (EBSCOhost); Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EBSCOhost Business Source Complete
subjects Algorithms
Complex networks
Complexity theory
Computational physics
Dwell time
Impulses
Impulsivity
Liapunov functions
Linear matrix inequalities
Mathematical models
Matrix methods
Switches
Switching
Switching theory
Synchronism
Synchronization
Time synchronization
title Synchronization of uncertain hybrid switching and impulsive complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20of%20uncertain%20hybrid%20switching%20and%20impulsive%20complex%20networks&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Yang,%20Xinsong&rft.date=2018-07&rft.volume=59&rft.spage=379&rft.epage=392&rft.pages=379-392&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2018.01.046&rft_dat=%3Cproquest_cross%3E2070923222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070923222&rft_id=info:pmid/&rft_els_id=S0307904X18300593&rfr_iscdi=true