Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem
Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2018-06, Vol.150, p.95-110 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110 |
---|---|
container_issue | |
container_start_page | 95 |
container_title | Knowledge-based systems |
container_volume | 150 |
creator | Wang, Jingyun Liu, Sanyang |
description | Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality. |
doi_str_mv | 10.1016/j.knosys.2018.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070921434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705118301254</els_id><sourcerecordid>2070921434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhY4pywdh6OL0iAeEkVXOBsOfamuE3jYqet-u9xVc6cVtqdmdV8hFwzyBmw-naRLwcf9zHnwJocihxAnJAJawTPRAnylExAVpAJqNg5uYhxAQCcs2ZC7LvfYk9bN-iwpzgYb90wpzs9YqBmb3qkup_74MbvFe18oNH324PiQe8xOj3QAcedD0sax7Ax4yZgpD3qMBxE6-DbHleX5KzTfcSrvzklX89Pn4-v2ezj5e3xfpaZoijHTForBaststZqy3SNktddIRtuRGnQClmlnWa8Exxl1dSmLQtj04mXbVs1xZTcHHPT358NxlEt_CYM6aXiIEByVhZlUpVHlQk-xoCdWge3SvUVA3XgqRbqyFMdeCooVOKZbHdHG6YGW4dBReMSMLQuoBmV9e7_gF-ZuINu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070921434</pqid></control><display><type>article</type><title>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Jingyun ; Liu, Sanyang</creator><creatorcontrib>Wang, Jingyun ; Liu, Sanyang</creatorcontrib><description>Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2018.03.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian network ; Binary encoding ; Binary system ; Coding ; Combinatorics ; Heuristic ; Heuristic algorithm ; Heuristic methods ; Hydrologic cycle ; Machine learning ; Rivers ; Streams ; Structure learning ; Water cycle algorithm</subject><ispartof>Knowledge-based systems, 2018-06, Vol.150, p.95-110</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</citedby><cites>FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705118301254$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wang, Jingyun</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><title>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</title><title>Knowledge-based systems</title><description>Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Binary encoding</subject><subject>Binary system</subject><subject>Coding</subject><subject>Combinatorics</subject><subject>Heuristic</subject><subject>Heuristic algorithm</subject><subject>Heuristic methods</subject><subject>Hydrologic cycle</subject><subject>Machine learning</subject><subject>Rivers</subject><subject>Streams</subject><subject>Structure learning</subject><subject>Water cycle algorithm</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhY4pywdh6OL0iAeEkVXOBsOfamuE3jYqet-u9xVc6cVtqdmdV8hFwzyBmw-naRLwcf9zHnwJocihxAnJAJawTPRAnylExAVpAJqNg5uYhxAQCcs2ZC7LvfYk9bN-iwpzgYb90wpzs9YqBmb3qkup_74MbvFe18oNH324PiQe8xOj3QAcedD0sax7Ax4yZgpD3qMBxE6-DbHleX5KzTfcSrvzklX89Pn4-v2ezj5e3xfpaZoijHTForBaststZqy3SNktddIRtuRGnQClmlnWa8Exxl1dSmLQtj04mXbVs1xZTcHHPT358NxlEt_CYM6aXiIEByVhZlUpVHlQk-xoCdWge3SvUVA3XgqRbqyFMdeCooVOKZbHdHG6YGW4dBReMSMLQuoBmV9e7_gF-ZuINu</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Wang, Jingyun</creator><creator>Liu, Sanyang</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180615</creationdate><title>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</title><author>Wang, Jingyun ; Liu, Sanyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Binary encoding</topic><topic>Binary system</topic><topic>Coding</topic><topic>Combinatorics</topic><topic>Heuristic</topic><topic>Heuristic algorithm</topic><topic>Heuristic methods</topic><topic>Hydrologic cycle</topic><topic>Machine learning</topic><topic>Rivers</topic><topic>Streams</topic><topic>Structure learning</topic><topic>Water cycle algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingyun</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingyun</au><au>Liu, Sanyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</atitle><jtitle>Knowledge-based systems</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>150</volume><spage>95</spage><epage>110</epage><pages>95-110</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2018.03.007</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2018-06, Vol.150, p.95-110 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2070921434 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Bayesian analysis Bayesian network Binary encoding Binary system Coding Combinatorics Heuristic Heuristic algorithm Heuristic methods Hydrologic cycle Machine learning Rivers Streams Structure learning Water cycle algorithm |
title | Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20binary%20encoding%20water%20cycle%20algorithm%20for%20solving%20Bayesian%20network%20structures%20learning%20problem&rft.jtitle=Knowledge-based%20systems&rft.au=Wang,%20Jingyun&rft.date=2018-06-15&rft.volume=150&rft.spage=95&rft.epage=110&rft.pages=95-110&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2018.03.007&rft_dat=%3Cproquest_cross%3E2070921434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070921434&rft_id=info:pmid/&rft_els_id=S0950705118301254&rfr_iscdi=true |