Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem

Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2018-06, Vol.150, p.95-110
Hauptverfasser: Wang, Jingyun, Liu, Sanyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 95
container_title Knowledge-based systems
container_volume 150
creator Wang, Jingyun
Liu, Sanyang
description Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality.
doi_str_mv 10.1016/j.knosys.2018.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070921434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705118301254</els_id><sourcerecordid>2070921434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhY4pywdh6OL0iAeEkVXOBsOfamuE3jYqet-u9xVc6cVtqdmdV8hFwzyBmw-naRLwcf9zHnwJocihxAnJAJawTPRAnylExAVpAJqNg5uYhxAQCcs2ZC7LvfYk9bN-iwpzgYb90wpzs9YqBmb3qkup_74MbvFe18oNH324PiQe8xOj3QAcedD0sax7Ax4yZgpD3qMBxE6-DbHleX5KzTfcSrvzklX89Pn4-v2ezj5e3xfpaZoijHTForBaststZqy3SNktddIRtuRGnQClmlnWa8Exxl1dSmLQtj04mXbVs1xZTcHHPT358NxlEt_CYM6aXiIEByVhZlUpVHlQk-xoCdWge3SvUVA3XgqRbqyFMdeCooVOKZbHdHG6YGW4dBReMSMLQuoBmV9e7_gF-ZuINu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070921434</pqid></control><display><type>article</type><title>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Jingyun ; Liu, Sanyang</creator><creatorcontrib>Wang, Jingyun ; Liu, Sanyang</creatorcontrib><description>Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2018.03.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Bayesian analysis ; Bayesian network ; Binary encoding ; Binary system ; Coding ; Combinatorics ; Heuristic ; Heuristic algorithm ; Heuristic methods ; Hydrologic cycle ; Machine learning ; Rivers ; Streams ; Structure learning ; Water cycle algorithm</subject><ispartof>Knowledge-based systems, 2018-06, Vol.150, p.95-110</ispartof><rights>2018</rights><rights>Copyright Elsevier Science Ltd. Jun 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</citedby><cites>FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705118301254$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wang, Jingyun</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><title>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</title><title>Knowledge-based systems</title><description>Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Bayesian network</subject><subject>Binary encoding</subject><subject>Binary system</subject><subject>Coding</subject><subject>Combinatorics</subject><subject>Heuristic</subject><subject>Heuristic algorithm</subject><subject>Heuristic methods</subject><subject>Hydrologic cycle</subject><subject>Machine learning</subject><subject>Rivers</subject><subject>Streams</subject><subject>Structure learning</subject><subject>Water cycle algorithm</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhY4pywdh6OL0iAeEkVXOBsOfamuE3jYqet-u9xVc6cVtqdmdV8hFwzyBmw-naRLwcf9zHnwJocihxAnJAJawTPRAnylExAVpAJqNg5uYhxAQCcs2ZC7LvfYk9bN-iwpzgYb90wpzs9YqBmb3qkup_74MbvFe18oNH324PiQe8xOj3QAcedD0sax7Ax4yZgpD3qMBxE6-DbHleX5KzTfcSrvzklX89Pn4-v2ezj5e3xfpaZoijHTForBaststZqy3SNktddIRtuRGnQClmlnWa8Exxl1dSmLQtj04mXbVs1xZTcHHPT358NxlEt_CYM6aXiIEByVhZlUpVHlQk-xoCdWge3SvUVA3XgqRbqyFMdeCooVOKZbHdHG6YGW4dBReMSMLQuoBmV9e7_gF-ZuINu</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Wang, Jingyun</creator><creator>Liu, Sanyang</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180615</creationdate><title>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</title><author>Wang, Jingyun ; Liu, Sanyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9dd9716de1bdad1a6e926f3982c74ced795a6ea12f72e9586cb43cd4ce24bb583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Bayesian network</topic><topic>Binary encoding</topic><topic>Binary system</topic><topic>Coding</topic><topic>Combinatorics</topic><topic>Heuristic</topic><topic>Heuristic algorithm</topic><topic>Heuristic methods</topic><topic>Hydrologic cycle</topic><topic>Machine learning</topic><topic>Rivers</topic><topic>Streams</topic><topic>Structure learning</topic><topic>Water cycle algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingyun</creatorcontrib><creatorcontrib>Liu, Sanyang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingyun</au><au>Liu, Sanyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem</atitle><jtitle>Knowledge-based systems</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>150</volume><spage>95</spage><epage>110</epage><pages>95-110</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Constructing Bayesian network structures from data is a computationally hard task. One important method to learn Bayesian network structures uses the meta-heuristic algorithms. In this paper, a novel binary encoding water cycle algorithm is proposed for the first time to address the Bayesian network structures learning problem. In this study, the sea, rivers and streams correspond to the candidate Bayesian network structures. Since it is a discrete problem to find an optimal structure, the logic operators have been used to calculate the positions of the individuals. Meanwhile, to balance the exploitation and exploration abilities of the algorithm, the ways how rivers and streams flow to the sea and the evaporation process have been designed with the new strategies. Experiments on well-known benchmark networks demonstrate that the proposed algorithm is capable of identifying the optimal or near-optimal structures. In the comparison to the use of the other algorithms, our method performs well and turns out to have the better solution quality.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2018.03.007</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2018-06, Vol.150, p.95-110
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2070921434
source Elsevier ScienceDirect Journals
subjects Algorithms
Bayesian analysis
Bayesian network
Binary encoding
Binary system
Coding
Combinatorics
Heuristic
Heuristic algorithm
Heuristic methods
Hydrologic cycle
Machine learning
Rivers
Streams
Structure learning
Water cycle algorithm
title Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20binary%20encoding%20water%20cycle%20algorithm%20for%20solving%20Bayesian%20network%20structures%20learning%20problem&rft.jtitle=Knowledge-based%20systems&rft.au=Wang,%20Jingyun&rft.date=2018-06-15&rft.volume=150&rft.spage=95&rft.epage=110&rft.pages=95-110&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2018.03.007&rft_dat=%3Cproquest_cross%3E2070921434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070921434&rft_id=info:pmid/&rft_els_id=S0950705118301254&rfr_iscdi=true