Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems
Modeling manufacturing processes assists the design of new systems, allowing predictions of future behaviors, identifying improvement areas and evaluating changes to existing systems. Probabilistic Boolean networks (PBN) have been used to study biological systems, since they combine uncertainty and...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2018-08, Vol.29 (6), p.1393-1413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1413 |
---|---|
container_issue | 6 |
container_start_page | 1393 |
container_title | Journal of intelligent manufacturing |
container_volume | 29 |
creator | Rivera Torres, Pedro J. Serrano Mercado, Eileen I. Anido Rifón, Luis |
description | Modeling manufacturing processes assists the design of new systems, allowing predictions of future behaviors, identifying improvement areas and evaluating changes to existing systems. Probabilistic Boolean networks (PBN) have been used to study biological systems, since they combine uncertainty and rule-based representation. A novel approach is proposed to model the design of an automated manufacturing assembly processes using PBNs to generate quantitative data for occurrence assessment in design failure mode and effects analysis. FMEA is a widely used tool in risk assessment (RA) to ensure design outputs consistently deliver the intended level of performance. Effectiveness of RA depends upon the robustness of the data used. Temporal logic is applied to analyze state successions in a transition system, while interactions and dynamics are captured over a set of Boolean variables using PBNs. Designs are therefore enhanced through assessment of risks, using proposed tools in the early phases of design of manufacturing systems. A two-sample T test demonstrates the proposed model provides values closer to expected values; consequently modeling observable phenomena (
p
value
>
0.05
). Simulations are used to generate data required to conduct inferential statistical tests to determine the level of correspondence between model prediction and real machine data. |
doi_str_mv | 10.1007/s10845-015-1183-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070691518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070691518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-192a939193a4772cae23632072ddde9f02ace038b4290267a79c59e3d92220e03</originalsourceid><addsrcrecordid>eNp1kMFPwyAUxonRxDn9A7yReEYfUNpynHNTkxk96JkwSl23tlToYvbfS1cTT54e7-N934MfQtcUbilAdhco5IkgQAWhNOdEnqAJFRkjOU3EKZqAFCkRgopzdBHCFgBkntIJqt-8W-t1VVehrwy-d662usWt7b-d3-HGFbau2k-s22JssNlYsztKIapYd5132mxw6Tx-WL4sZsdTo9t9qU2_98NoOITeNuESnZW6Dvbqt07Rx3LxPn8iq9fH5_lsRQxPZU-oZFpySSXXSZYxoy3jKWeQsaIorCyBaWOB5-uESWBppjNphLS8kIwxiDdTdDPmxqd97W3o1dbtfRtXqpgCqaQiMpoiOk4Z70LwtlSdrxrtD4qCGqCqEaqKUNUAVcnoYaMndMPHrP9L_t_0A0fgeZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070691518</pqid></control><display><type>article</type><title>Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems</title><source>Springer Online Journals Complete</source><creator>Rivera Torres, Pedro J. ; Serrano Mercado, Eileen I. ; Anido Rifón, Luis</creator><creatorcontrib>Rivera Torres, Pedro J. ; Serrano Mercado, Eileen I. ; Anido Rifón, Luis</creatorcontrib><description>Modeling manufacturing processes assists the design of new systems, allowing predictions of future behaviors, identifying improvement areas and evaluating changes to existing systems. Probabilistic Boolean networks (PBN) have been used to study biological systems, since they combine uncertainty and rule-based representation. A novel approach is proposed to model the design of an automated manufacturing assembly processes using PBNs to generate quantitative data for occurrence assessment in design failure mode and effects analysis. FMEA is a widely used tool in risk assessment (RA) to ensure design outputs consistently deliver the intended level of performance. Effectiveness of RA depends upon the robustness of the data used. Temporal logic is applied to analyze state successions in a transition system, while interactions and dynamics are captured over a set of Boolean variables using PBNs. Designs are therefore enhanced through assessment of risks, using proposed tools in the early phases of design of manufacturing systems. A two-sample T test demonstrates the proposed model provides values closer to expected values; consequently modeling observable phenomena (
p
value
>
0.05
). Simulations are used to generate data required to conduct inferential statistical tests to determine the level of correspondence between model prediction and real machine data.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-015-1183-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boolean ; Boolean algebra ; Boolean functions ; Business and Management ; Computer simulation ; Control ; Design ; Design analysis ; Design engineering ; Failure analysis ; Machines ; Manufacturing ; Manufacturing industry ; Mathematical models ; Mechatronics ; Model testing ; Modelling ; Processes ; Production ; Risk assessment ; Robotics ; Statistical analysis ; Statistical tests ; Temporal logic</subject><ispartof>Journal of intelligent manufacturing, 2018-08, Vol.29 (6), p.1393-1413</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Journal of Intelligent Manufacturing is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-192a939193a4772cae23632072ddde9f02ace038b4290267a79c59e3d92220e03</citedby><cites>FETCH-LOGICAL-c369t-192a939193a4772cae23632072ddde9f02ace038b4290267a79c59e3d92220e03</cites><orcidid>0000-0003-3507-1821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-015-1183-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-015-1183-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rivera Torres, Pedro J.</creatorcontrib><creatorcontrib>Serrano Mercado, Eileen I.</creatorcontrib><creatorcontrib>Anido Rifón, Luis</creatorcontrib><title>Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Modeling manufacturing processes assists the design of new systems, allowing predictions of future behaviors, identifying improvement areas and evaluating changes to existing systems. Probabilistic Boolean networks (PBN) have been used to study biological systems, since they combine uncertainty and rule-based representation. A novel approach is proposed to model the design of an automated manufacturing assembly processes using PBNs to generate quantitative data for occurrence assessment in design failure mode and effects analysis. FMEA is a widely used tool in risk assessment (RA) to ensure design outputs consistently deliver the intended level of performance. Effectiveness of RA depends upon the robustness of the data used. Temporal logic is applied to analyze state successions in a transition system, while interactions and dynamics are captured over a set of Boolean variables using PBNs. Designs are therefore enhanced through assessment of risks, using proposed tools in the early phases of design of manufacturing systems. A two-sample T test demonstrates the proposed model provides values closer to expected values; consequently modeling observable phenomena (
p
value
>
0.05
). Simulations are used to generate data required to conduct inferential statistical tests to determine the level of correspondence between model prediction and real machine data.</description><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Business and Management</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Design</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Failure analysis</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Manufacturing industry</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Model testing</subject><subject>Modelling</subject><subject>Processes</subject><subject>Production</subject><subject>Risk assessment</subject><subject>Robotics</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Temporal logic</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMFPwyAUxonRxDn9A7yReEYfUNpynHNTkxk96JkwSl23tlToYvbfS1cTT54e7-N934MfQtcUbilAdhco5IkgQAWhNOdEnqAJFRkjOU3EKZqAFCkRgopzdBHCFgBkntIJqt-8W-t1VVehrwy-d662usWt7b-d3-HGFbau2k-s22JssNlYsztKIapYd5132mxw6Tx-WL4sZsdTo9t9qU2_98NoOITeNuESnZW6Dvbqt07Rx3LxPn8iq9fH5_lsRQxPZU-oZFpySSXXSZYxoy3jKWeQsaIorCyBaWOB5-uESWBppjNphLS8kIwxiDdTdDPmxqd97W3o1dbtfRtXqpgCqaQiMpoiOk4Z70LwtlSdrxrtD4qCGqCqEaqKUNUAVcnoYaMndMPHrP9L_t_0A0fgeZk</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Rivera Torres, Pedro J.</creator><creator>Serrano Mercado, Eileen I.</creator><creator>Anido Rifón, Luis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3507-1821</orcidid></search><sort><creationdate>20180801</creationdate><title>Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems</title><author>Rivera Torres, Pedro J. ; Serrano Mercado, Eileen I. ; Anido Rifón, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-192a939193a4772cae23632072ddde9f02ace038b4290267a79c59e3d92220e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Business and Management</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Design</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Failure analysis</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Manufacturing industry</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Model testing</topic><topic>Modelling</topic><topic>Processes</topic><topic>Production</topic><topic>Risk assessment</topic><topic>Robotics</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivera Torres, Pedro J.</creatorcontrib><creatorcontrib>Serrano Mercado, Eileen I.</creatorcontrib><creatorcontrib>Anido Rifón, Luis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera Torres, Pedro J.</au><au>Serrano Mercado, Eileen I.</au><au>Anido Rifón, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>29</volume><issue>6</issue><spage>1393</spage><epage>1413</epage><pages>1393-1413</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Modeling manufacturing processes assists the design of new systems, allowing predictions of future behaviors, identifying improvement areas and evaluating changes to existing systems. Probabilistic Boolean networks (PBN) have been used to study biological systems, since they combine uncertainty and rule-based representation. A novel approach is proposed to model the design of an automated manufacturing assembly processes using PBNs to generate quantitative data for occurrence assessment in design failure mode and effects analysis. FMEA is a widely used tool in risk assessment (RA) to ensure design outputs consistently deliver the intended level of performance. Effectiveness of RA depends upon the robustness of the data used. Temporal logic is applied to analyze state successions in a transition system, while interactions and dynamics are captured over a set of Boolean variables using PBNs. Designs are therefore enhanced through assessment of risks, using proposed tools in the early phases of design of manufacturing systems. A two-sample T test demonstrates the proposed model provides values closer to expected values; consequently modeling observable phenomena (
p
value
>
0.05
). Simulations are used to generate data required to conduct inferential statistical tests to determine the level of correspondence between model prediction and real machine data.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-015-1183-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3507-1821</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2018-08, Vol.29 (6), p.1393-1413 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2070691518 |
source | Springer Online Journals Complete |
subjects | Boolean Boolean algebra Boolean functions Business and Management Computer simulation Control Design Design analysis Design engineering Failure analysis Machines Manufacturing Manufacturing industry Mathematical models Mechatronics Model testing Modelling Processes Production Risk assessment Robotics Statistical analysis Statistical tests Temporal logic |
title | Probabilistic Boolean network modeling and model checking as an approach for DFMEA for manufacturing systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Boolean%20network%20modeling%20and%20model%20checking%20as%20an%20approach%20for%20DFMEA%20for%20manufacturing%20systems&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Rivera%C2%A0Torres,%20Pedro%20J.&rft.date=2018-08-01&rft.volume=29&rft.issue=6&rft.spage=1393&rft.epage=1413&rft.pages=1393-1413&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-015-1183-9&rft_dat=%3Cproquest_cross%3E2070691518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070691518&rft_id=info:pmid/&rfr_iscdi=true |