Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches
Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral chan...
Gespeichert in:
Veröffentlicht in: | Surveys in geophysics 2019-05, Vol.40 (3), p.657-687 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 687 |
---|---|
container_issue | 3 |
container_start_page | 657 |
container_title | Surveys in geophysics |
container_volume | 40 |
creator | Guanter, Luis Brell, Maximilian Chan, Jonathan C.-W. Giardino, Claudia Gomez-Dans, Jose Mielke, Christian Morsdorf, Felix Segl, Karl Yokoya, Naoto |
description | Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided. |
doi_str_mv | 10.1007/s10712-018-9485-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070616556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070616556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuC19GTZkmTyzH8GAyGTq9Dmp52Ha6tSYdsv96UCl55deDwPu_hPITcMrhnANlDYJCxlAJTVM-UoKczMmEi4xS0kOdkAkxqylOtLslVCDsAUFLzCXndHBv0VY0hactk01mHeesbTJZ7W9VNFVfoet8G13bH5Lvut8m636JP3nDf9phssAlDbN51vrVui-GaXJT2M-DN75ySj6fH98ULXa2fl4v5ijoudE8FLxRDzWWmSm2hyJVDPeOIucAcNGNMWqFSyMois5yXgqc2m1nnpFUWRMGn5G7sjYe_Dhh6s2sPvoknTaRAMimEjCk2plz8IXgsTefrvfVHw8AM5sxozkRzZjBnTpFJRybEbFOh_2v-H_oBStNyAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070616556</pqid></control><display><type>article</type><title>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</title><source>SpringerNature Journals</source><creator>Guanter, Luis ; Brell, Maximilian ; Chan, Jonathan C.-W. ; Giardino, Claudia ; Gomez-Dans, Jose ; Mielke, Christian ; Morsdorf, Felix ; Segl, Karl ; Yokoya, Naoto</creator><creatorcontrib>Guanter, Luis ; Brell, Maximilian ; Chan, Jonathan C.-W. ; Giardino, Claudia ; Gomez-Dans, Jose ; Mielke, Christian ; Morsdorf, Felix ; Segl, Karl ; Yokoya, Naoto</creatorcontrib><description>Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.</description><identifier>ISSN: 0169-3298</identifier><identifier>EISSN: 1573-0956</identifier><identifier>DOI: 10.1007/s10712-018-9485-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analytical methods ; Astronomy ; Complementarity ; Composition ; Data ; Detection ; Earth ; Earth and Environmental Science ; Earth Sciences ; Earth surface ; Evaluation ; Exploitation ; Geophysics/Geodesy ; Hyperspectral imaging ; Imaging spectrometers ; Imaging techniques ; Infrared radiation ; Lidar ; Lidar measurements ; Observations and Techniques ; Reflectance ; Remote monitoring ; Remote sensing ; Remote sensing techniques ; Resolution ; Spatial data ; Spatial resolution ; Spectra ; Spectrometers ; Spectroscopic techniques ; Spectroscopy ; Spectrum analysis ; Swath width ; Temporal resolution</subject><ispartof>Surveys in geophysics, 2019-05, Vol.40 (3), p.657-687</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Surveys in Geophysics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</citedby><cites>FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</cites><orcidid>0000-0002-8389-5764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10712-018-9485-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10712-018-9485-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Brell, Maximilian</creatorcontrib><creatorcontrib>Chan, Jonathan C.-W.</creatorcontrib><creatorcontrib>Giardino, Claudia</creatorcontrib><creatorcontrib>Gomez-Dans, Jose</creatorcontrib><creatorcontrib>Mielke, Christian</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Segl, Karl</creatorcontrib><creatorcontrib>Yokoya, Naoto</creatorcontrib><title>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</title><title>Surveys in geophysics</title><addtitle>Surv Geophys</addtitle><description>Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.</description><subject>Analytical methods</subject><subject>Astronomy</subject><subject>Complementarity</subject><subject>Composition</subject><subject>Data</subject><subject>Detection</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth surface</subject><subject>Evaluation</subject><subject>Exploitation</subject><subject>Geophysics/Geodesy</subject><subject>Hyperspectral imaging</subject><subject>Imaging spectrometers</subject><subject>Imaging techniques</subject><subject>Infrared radiation</subject><subject>Lidar</subject><subject>Lidar measurements</subject><subject>Observations and Techniques</subject><subject>Reflectance</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Remote sensing techniques</subject><subject>Resolution</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>Spectrometers</subject><subject>Spectroscopic techniques</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Swath width</subject><subject>Temporal resolution</subject><issn>0169-3298</issn><issn>1573-0956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLuC19GTZkmTyzH8GAyGTq9Dmp52Ha6tSYdsv96UCl55deDwPu_hPITcMrhnANlDYJCxlAJTVM-UoKczMmEi4xS0kOdkAkxqylOtLslVCDsAUFLzCXndHBv0VY0hactk01mHeesbTJZ7W9VNFVfoet8G13bH5Lvut8m636JP3nDf9phssAlDbN51vrVui-GaXJT2M-DN75ySj6fH98ULXa2fl4v5ijoudE8FLxRDzWWmSm2hyJVDPeOIucAcNGNMWqFSyMois5yXgqc2m1nnpFUWRMGn5G7sjYe_Dhh6s2sPvoknTaRAMimEjCk2plz8IXgsTefrvfVHw8AM5sxozkRzZjBnTpFJRybEbFOh_2v-H_oBStNyAg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Guanter, Luis</creator><creator>Brell, Maximilian</creator><creator>Chan, Jonathan C.-W.</creator><creator>Giardino, Claudia</creator><creator>Gomez-Dans, Jose</creator><creator>Mielke, Christian</creator><creator>Morsdorf, Felix</creator><creator>Segl, Karl</creator><creator>Yokoya, Naoto</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8389-5764</orcidid></search><sort><creationdate>20190501</creationdate><title>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</title><author>Guanter, Luis ; Brell, Maximilian ; Chan, Jonathan C.-W. ; Giardino, Claudia ; Gomez-Dans, Jose ; Mielke, Christian ; Morsdorf, Felix ; Segl, Karl ; Yokoya, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical methods</topic><topic>Astronomy</topic><topic>Complementarity</topic><topic>Composition</topic><topic>Data</topic><topic>Detection</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth surface</topic><topic>Evaluation</topic><topic>Exploitation</topic><topic>Geophysics/Geodesy</topic><topic>Hyperspectral imaging</topic><topic>Imaging spectrometers</topic><topic>Imaging techniques</topic><topic>Infrared radiation</topic><topic>Lidar</topic><topic>Lidar measurements</topic><topic>Observations and Techniques</topic><topic>Reflectance</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Remote sensing techniques</topic><topic>Resolution</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>Spectrometers</topic><topic>Spectroscopic techniques</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Swath width</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Brell, Maximilian</creatorcontrib><creatorcontrib>Chan, Jonathan C.-W.</creatorcontrib><creatorcontrib>Giardino, Claudia</creatorcontrib><creatorcontrib>Gomez-Dans, Jose</creatorcontrib><creatorcontrib>Mielke, Christian</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Segl, Karl</creatorcontrib><creatorcontrib>Yokoya, Naoto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Surveys in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guanter, Luis</au><au>Brell, Maximilian</au><au>Chan, Jonathan C.-W.</au><au>Giardino, Claudia</au><au>Gomez-Dans, Jose</au><au>Mielke, Christian</au><au>Morsdorf, Felix</au><au>Segl, Karl</au><au>Yokoya, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</atitle><jtitle>Surveys in geophysics</jtitle><stitle>Surv Geophys</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>40</volume><issue>3</issue><spage>657</spage><epage>687</epage><pages>657-687</pages><issn>0169-3298</issn><eissn>1573-0956</eissn><abstract>Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10712-018-9485-z</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8389-5764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3298 |
ispartof | Surveys in geophysics, 2019-05, Vol.40 (3), p.657-687 |
issn | 0169-3298 1573-0956 |
language | eng |
recordid | cdi_proquest_journals_2070616556 |
source | SpringerNature Journals |
subjects | Analytical methods Astronomy Complementarity Composition Data Detection Earth Earth and Environmental Science Earth Sciences Earth surface Evaluation Exploitation Geophysics/Geodesy Hyperspectral imaging Imaging spectrometers Imaging techniques Infrared radiation Lidar Lidar measurements Observations and Techniques Reflectance Remote monitoring Remote sensing Remote sensing techniques Resolution Spatial data Spatial resolution Spectra Spectrometers Spectroscopic techniques Spectroscopy Spectrum analysis Swath width Temporal resolution |
title | Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergies%20of%20Spaceborne%20Imaging%20Spectroscopy%20with%20Other%20Remote%20Sensing%20Approaches&rft.jtitle=Surveys%20in%20geophysics&rft.au=Guanter,%20Luis&rft.date=2019-05-01&rft.volume=40&rft.issue=3&rft.spage=657&rft.epage=687&rft.pages=657-687&rft.issn=0169-3298&rft.eissn=1573-0956&rft_id=info:doi/10.1007/s10712-018-9485-z&rft_dat=%3Cproquest_cross%3E2070616556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070616556&rft_id=info:pmid/&rfr_iscdi=true |