Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches

Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surveys in geophysics 2019-05, Vol.40 (3), p.657-687
Hauptverfasser: Guanter, Luis, Brell, Maximilian, Chan, Jonathan C.-W., Giardino, Claudia, Gomez-Dans, Jose, Mielke, Christian, Morsdorf, Felix, Segl, Karl, Yokoya, Naoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue 3
container_start_page 657
container_title Surveys in geophysics
container_volume 40
creator Guanter, Luis
Brell, Maximilian
Chan, Jonathan C.-W.
Giardino, Claudia
Gomez-Dans, Jose
Mielke, Christian
Morsdorf, Felix
Segl, Karl
Yokoya, Naoto
description Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.
doi_str_mv 10.1007/s10712-018-9485-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070616556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070616556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuC19GTZkmTyzH8GAyGTq9Dmp52Ha6tSYdsv96UCl55deDwPu_hPITcMrhnANlDYJCxlAJTVM-UoKczMmEi4xS0kOdkAkxqylOtLslVCDsAUFLzCXndHBv0VY0hactk01mHeesbTJZ7W9VNFVfoet8G13bH5Lvut8m636JP3nDf9phssAlDbN51vrVui-GaXJT2M-DN75ySj6fH98ULXa2fl4v5ijoudE8FLxRDzWWmSm2hyJVDPeOIucAcNGNMWqFSyMois5yXgqc2m1nnpFUWRMGn5G7sjYe_Dhh6s2sPvoknTaRAMimEjCk2plz8IXgsTefrvfVHw8AM5sxozkRzZjBnTpFJRybEbFOh_2v-H_oBStNyAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070616556</pqid></control><display><type>article</type><title>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</title><source>SpringerNature Journals</source><creator>Guanter, Luis ; Brell, Maximilian ; Chan, Jonathan C.-W. ; Giardino, Claudia ; Gomez-Dans, Jose ; Mielke, Christian ; Morsdorf, Felix ; Segl, Karl ; Yokoya, Naoto</creator><creatorcontrib>Guanter, Luis ; Brell, Maximilian ; Chan, Jonathan C.-W. ; Giardino, Claudia ; Gomez-Dans, Jose ; Mielke, Christian ; Morsdorf, Felix ; Segl, Karl ; Yokoya, Naoto</creatorcontrib><description>Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.</description><identifier>ISSN: 0169-3298</identifier><identifier>EISSN: 1573-0956</identifier><identifier>DOI: 10.1007/s10712-018-9485-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analytical methods ; Astronomy ; Complementarity ; Composition ; Data ; Detection ; Earth ; Earth and Environmental Science ; Earth Sciences ; Earth surface ; Evaluation ; Exploitation ; Geophysics/Geodesy ; Hyperspectral imaging ; Imaging spectrometers ; Imaging techniques ; Infrared radiation ; Lidar ; Lidar measurements ; Observations and Techniques ; Reflectance ; Remote monitoring ; Remote sensing ; Remote sensing techniques ; Resolution ; Spatial data ; Spatial resolution ; Spectra ; Spectrometers ; Spectroscopic techniques ; Spectroscopy ; Spectrum analysis ; Swath width ; Temporal resolution</subject><ispartof>Surveys in geophysics, 2019-05, Vol.40 (3), p.657-687</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Surveys in Geophysics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</citedby><cites>FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</cites><orcidid>0000-0002-8389-5764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10712-018-9485-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10712-018-9485-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Brell, Maximilian</creatorcontrib><creatorcontrib>Chan, Jonathan C.-W.</creatorcontrib><creatorcontrib>Giardino, Claudia</creatorcontrib><creatorcontrib>Gomez-Dans, Jose</creatorcontrib><creatorcontrib>Mielke, Christian</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Segl, Karl</creatorcontrib><creatorcontrib>Yokoya, Naoto</creatorcontrib><title>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</title><title>Surveys in geophysics</title><addtitle>Surv Geophys</addtitle><description>Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.</description><subject>Analytical methods</subject><subject>Astronomy</subject><subject>Complementarity</subject><subject>Composition</subject><subject>Data</subject><subject>Detection</subject><subject>Earth</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth surface</subject><subject>Evaluation</subject><subject>Exploitation</subject><subject>Geophysics/Geodesy</subject><subject>Hyperspectral imaging</subject><subject>Imaging spectrometers</subject><subject>Imaging techniques</subject><subject>Infrared radiation</subject><subject>Lidar</subject><subject>Lidar measurements</subject><subject>Observations and Techniques</subject><subject>Reflectance</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Remote sensing techniques</subject><subject>Resolution</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>Spectra</subject><subject>Spectrometers</subject><subject>Spectroscopic techniques</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Swath width</subject><subject>Temporal resolution</subject><issn>0169-3298</issn><issn>1573-0956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhoMoOKc_wLuC19GTZkmTyzH8GAyGTq9Dmp52Ha6tSYdsv96UCl55deDwPu_hPITcMrhnANlDYJCxlAJTVM-UoKczMmEi4xS0kOdkAkxqylOtLslVCDsAUFLzCXndHBv0VY0hactk01mHeesbTJZ7W9VNFVfoet8G13bH5Lvut8m636JP3nDf9phssAlDbN51vrVui-GaXJT2M-DN75ySj6fH98ULXa2fl4v5ijoudE8FLxRDzWWmSm2hyJVDPeOIucAcNGNMWqFSyMois5yXgqc2m1nnpFUWRMGn5G7sjYe_Dhh6s2sPvoknTaRAMimEjCk2plz8IXgsTefrvfVHw8AM5sxozkRzZjBnTpFJRybEbFOh_2v-H_oBStNyAg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Guanter, Luis</creator><creator>Brell, Maximilian</creator><creator>Chan, Jonathan C.-W.</creator><creator>Giardino, Claudia</creator><creator>Gomez-Dans, Jose</creator><creator>Mielke, Christian</creator><creator>Morsdorf, Felix</creator><creator>Segl, Karl</creator><creator>Yokoya, Naoto</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8389-5764</orcidid></search><sort><creationdate>20190501</creationdate><title>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</title><author>Guanter, Luis ; Brell, Maximilian ; Chan, Jonathan C.-W. ; Giardino, Claudia ; Gomez-Dans, Jose ; Mielke, Christian ; Morsdorf, Felix ; Segl, Karl ; Yokoya, Naoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-53d81e93678f9a0db8ce943eeb5eb091116a58207fd7a33f532a74acc6a8a05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical methods</topic><topic>Astronomy</topic><topic>Complementarity</topic><topic>Composition</topic><topic>Data</topic><topic>Detection</topic><topic>Earth</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth surface</topic><topic>Evaluation</topic><topic>Exploitation</topic><topic>Geophysics/Geodesy</topic><topic>Hyperspectral imaging</topic><topic>Imaging spectrometers</topic><topic>Imaging techniques</topic><topic>Infrared radiation</topic><topic>Lidar</topic><topic>Lidar measurements</topic><topic>Observations and Techniques</topic><topic>Reflectance</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Remote sensing techniques</topic><topic>Resolution</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>Spectra</topic><topic>Spectrometers</topic><topic>Spectroscopic techniques</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Swath width</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Brell, Maximilian</creatorcontrib><creatorcontrib>Chan, Jonathan C.-W.</creatorcontrib><creatorcontrib>Giardino, Claudia</creatorcontrib><creatorcontrib>Gomez-Dans, Jose</creatorcontrib><creatorcontrib>Mielke, Christian</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Segl, Karl</creatorcontrib><creatorcontrib>Yokoya, Naoto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Surveys in geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guanter, Luis</au><au>Brell, Maximilian</au><au>Chan, Jonathan C.-W.</au><au>Giardino, Claudia</au><au>Gomez-Dans, Jose</au><au>Mielke, Christian</au><au>Morsdorf, Felix</au><au>Segl, Karl</au><au>Yokoya, Naoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches</atitle><jtitle>Surveys in geophysics</jtitle><stitle>Surv Geophys</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>40</volume><issue>3</issue><spage>657</spage><epage>687</epage><pages>657-687</pages><issn>0169-3298</issn><eissn>1573-0956</eissn><abstract>Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyperspectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels, allowing an accurate representation of the surface composition through spectroscopic techniques. However, technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral information. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this contribution we review theoretical and methodological aspects of potential synergies between optical IS and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne optical IS and MS systems because of the expected availability of the two types of data in the next years. Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10712-018-9485-z</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-8389-5764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-3298
ispartof Surveys in geophysics, 2019-05, Vol.40 (3), p.657-687
issn 0169-3298
1573-0956
language eng
recordid cdi_proquest_journals_2070616556
source SpringerNature Journals
subjects Analytical methods
Astronomy
Complementarity
Composition
Data
Detection
Earth
Earth and Environmental Science
Earth Sciences
Earth surface
Evaluation
Exploitation
Geophysics/Geodesy
Hyperspectral imaging
Imaging spectrometers
Imaging techniques
Infrared radiation
Lidar
Lidar measurements
Observations and Techniques
Reflectance
Remote monitoring
Remote sensing
Remote sensing techniques
Resolution
Spatial data
Spatial resolution
Spectra
Spectrometers
Spectroscopic techniques
Spectroscopy
Spectrum analysis
Swath width
Temporal resolution
title Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergies%20of%20Spaceborne%20Imaging%20Spectroscopy%20with%20Other%20Remote%20Sensing%20Approaches&rft.jtitle=Surveys%20in%20geophysics&rft.au=Guanter,%20Luis&rft.date=2019-05-01&rft.volume=40&rft.issue=3&rft.spage=657&rft.epage=687&rft.pages=657-687&rft.issn=0169-3298&rft.eissn=1573-0956&rft_id=info:doi/10.1007/s10712-018-9485-z&rft_dat=%3Cproquest_cross%3E2070616556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070616556&rft_id=info:pmid/&rfr_iscdi=true