Superposition principle on the viscosity solutions of infinity Laplace equations

We consider the sum of the solutions of two infinity Laplace equations in disjoint variables. We prove that the superposed function is a viscosity solution of the infinity Laplace equation in the extension domains with the sum of inhomogeneous terms if one of the solutions is in the sense of viscosi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2018-06, Vol.171, p.32-40
Hauptverfasser: Hong, Guanghao, Feng, Xiaomeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the sum of the solutions of two infinity Laplace equations in disjoint variables. We prove that the superposed function is a viscosity solution of the infinity Laplace equation in the extension domains with the sum of inhomogeneous terms if one of the solutions is in the sense of viscosity and the other is in the classical sense. We also construct a counterexample to show that the conclusion may not be true if both of the solutions are merely in the viscosity sense.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2018.01.011